prove by induction that \(\large 1 \times 2 + 2 \times 3 + ... +n(n+1) = \frac{1}{3}n(n+1)(n+2) \)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

prove by induction that \(\large 1 \times 2 + 2 \times 3 + ... +n(n+1) = \frac{1}{3}n(n+1)(n+2) \)

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

well, where are you stuck i assume you should know the steps n=k, then n=k+1
Assume \(n=k\) is true \[1*2+2*3+...+k(k+1) = \frac{1k}{3}(k+1)(k+2)\] Prove \(n=k+1\) \[1*2+2*3+...+k(k+1)+(k+1)(k+2) = \frac{(k+1)(k+2)(k+3)}{3}\] \[\frac{(k)(k+1)(k+2)}{3} + (k+1)(k+2) = \frac{(k+1)(k+2)(k+3)}{3}\] Now, you can prove RHS = LHS
ok i understand and have worked the up to the point \(\large 1* 2 + 1* 3 + ... + k+1(k+2) = 1 * 2 + 1*3 + ... +k(k+1) +k+1(k+2) \) \(\large = \frac{1}{3}k(k+1)(k+2)+(k+1)(k+2)\) then what?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

for left side : k(k+1)(k+2)/3 + (k+1)(k+2) = (k+1)(k+2)(k/3 + 1) = (k+1)(k+2)(k+3)/3 same like right side
Well, you prove as I said above. Prove the LHS = RHS \[=>(k+1)(k+2)\left[ \frac{k}{3}+1\right]\]It should be straight forward now.
Just, some algebra and you're done!
it's still blurry but i'll try to get it in a bit :)
Well, where are you stuck?
All you have to do here is: Prove the LHS that is: \[\frac{(k)(k+1)(k+2)}{3} + (k+1)(k+2) \] Is equal to the RHS: \[=> \frac{(k+1)(k+2)(k+3)}{3}\]
ohh, thanks :) normal algebra takes off from there i see :) makes sense now xD

Not the answer you are looking for?

Search for more explanations.

Ask your own question