\[(\forall n\in \mathbb Z)[n|n^2]\]

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

\[(\forall n\in \mathbb Z)[n|n^2]\]

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

t/f
What does "|" mean in logic?
divides

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

The division thing? Yes.
Except for 0.
True
What if \(\rm n = 0\)?
n^2=n*n so (n*n)/n=n
False.
Truesomeness
Though the statement is true for \(\mathbb{Z}^+\)
Dont read :\[n\mid n^2\]as division. By definition, \[a\mid b \iff b=ak ,k\in \mathbb{Z}\]there is no division taking place. By this definition, 0 does divide 0^2 since 0^2=0*0
I've always heard, zero cannot divide anything.
You are thinking of fractions. Notice the definition doesnt contain anything about fractions.
its a statement only about multiplication.
Oh.
\[a|b \iff \exists q[b=aq],a\neq 0\]
ah, then i am mistaken. if a cant be zero then what i posted is wrong.
So, in fact, we do have fractions in the definition.
hmmm, i still wouldnt say there are fractions. This is generally the way they talk about division in Rings, where only multiplication and addition are defined. But yes, a cannot be zero. http://primes.utm.edu/glossary/xpage/divides.html
\(a|b\) denotes \(b\) is divisible by \( a \)

Not the answer you are looking for?

Search for more explanations.

Ask your own question