Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Here's a fun one: Consider an incline, which is one part of a circle, radius 'r' m. From one end of an incline(A), to the center O, there is a frictionless plane inclined at an angle of theta. A mass (A) slided down the striaght. slope. Another mass (B) which has the same mass of A, slides down the circular incline from the other end. Determine which mass reaches the center O first. It's better if you show your calculations...You're not guessing, are you? :)

Physics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1350647588577:dw| hint: theta will vanish.
\[2\sqrt{\frac{ r }{ g }}\]vs\[\frac{ \pi }{ 2 } \sqrt{\frac{ r }{ g }} \] \[...\huge ?\]
lol calc then one of them is the right one.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

wut.
you sure about the sqrt for the g?
these are times.
yup. doesn't the g during the derivation has a square?
don't think so. I see mine is wrong for a different reason though: used the wrong angle for chord length.... so what's the simple way to do it?
hmm..I'm used the work-energy theorem and striaght-line motion equations but let's see if others have more elegant answers.
|dw:1350732149436:dw| compare v1 and v2 when it reach center O |dw:1350733431967:dw|
Would you mind labelling the graph? lol Didn't get 'l' because I can't the see the whole pic. And who is 1 and 2?\ Hint: Find the time taken. The velocity is just part of it. Because the distance taken might(might!!) just cancel them out.

Not the answer you are looking for?

Search for more explanations.

Ask your own question