• anonymous
Hello people! I've been working on this problem, but I can't find how differentials of V on the left side of the equation appear. *** Show, by expansion of the surface integral, that (see attached image). Hint: choose the volume to be a differential volume, dx dy dz . *** Here d(sigma) is a vector surface element, V is a vector field, and d(tau) is a infinitesimal volume element. Well, from the right side of the equation is clear that derivatives of V will appear, but I can't do the same on the left side, where I only get components of the vector field multiplied by infinitesimal ar
MIT 8.01 Physics I Classical Mechanics, Fall 1999
• Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Looking for something else?

Not the answer you are looking for? Search for more explanations.