UnkleRhaukus
  • UnkleRhaukus
\[\neg[\forall x[x < 0 \Rightarrow\exists y (y^2 = x)]]\iff\exists x[x\geq0\Rightarrow\forall y(y^2\neq x)]\]
Meta-math
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
UnkleRhaukus
  • UnkleRhaukus
am i right/
UnkleRhaukus
  • UnkleRhaukus
no wait , i see error
UnkleRhaukus
  • UnkleRhaukus
the negation of an implication

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

helder_edwin
  • helder_edwin
the negation of \(\to\) is \(\wedge\)
UnkleRhaukus
  • UnkleRhaukus
yeah
helder_edwin
  • helder_edwin
\[ \large \neg(p\to q)\equiv p\wedge\neg q \]
UnkleRhaukus
  • UnkleRhaukus
\[\exists x[x<0\wedge\forall y(y^2\neq x)]\]
swissgirl
  • swissgirl
Ya that makes more sense
swissgirl
  • swissgirl
hmmm you edited your question but its still incorrect
UnkleRhaukus
  • UnkleRhaukus
\[\neg\left[\forall x[x < 0 \Rightarrow\exists y (y^2 = x)]\right]\iff\exists x\left[x<0\land\forall y(y^2\neq x)\right]\]
swissgirl
  • swissgirl
Yes thats the answer
UnkleRhaukus
  • UnkleRhaukus
thanks to you both
swissgirl
  • swissgirl
not that I helped :P
helder_edwin
  • helder_edwin
u r welcome

Looking for something else?

Not the answer you are looking for? Search for more explanations.