At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

See more answers at brainly.com

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions

|dw:1350805115720:dw|

|dw:1350805844589:dw|

Ignore me too. I just realized this probably requires calculus stuff I'm not familiar with. :P

Maybe this is an optimization problem or something?

yes sir,,i do..

im getting this
minimize : .09 r/2 [1 - \(\frac{sin\theta}{\theta}\) ]

ohh \(\theta \) is also constant here as volume is fixed, hang on..

Sorry @shubhamsrg I had to go away for a second but am back now. OK give me a second.

take your time sir! :)

http://mathworld.wolfram.com/Quarter-TankProblem.html

\[ \huge {\pi r^2 \over {2\pi \over \theta}} - {1\over2}rr \sin \theta = 0.09 \pi r^2 \]

The cylinder can be tilted any way or it is tilted in following way|dw:1350825580056:dw|

res on its side right,,i'd assume the one in your figure..

Then, I dont think its a calculas problem.

@mukushla ? :/

|dw:1350914228619:dw|

Isnt x=9 given???

And we have to prove |dw:1350915430127:dw|

Did u solve theta and pluged in its value ???