At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
when you say its a field what does that mean? i gotta see like an example for it..
For example i know that R^2 = (a,b) <-- dimension of two but i dont know how to do F stuff is there some kind of chart?
F is just an arbitrary field. When you say\[\mathbb{R}^2\]you mean\[(a,b), a,b\in \mathbb{R}\]all ordered pairs where a and b are in R. When you say\[\mathbb{F}^2\]we mean\[(a,b),a,b\in\mathbb{F}\]all ordered pairs where a,b come from the same field.
Right. In most of linear algebra, we never use the properties that are specific to R (things like completeness, etc). We only use the field properties of R. So in the theory of linear algebra, we can talk in the most general of settings, an arbitrary field.