Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Prove or disprove: For any integer n, the number n² + n + 1 is odd.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
i think that's true
i think that to but i have to prove some how
5^2 + 5 +1 25 + 5 +1 = 31 (odd) 1^2 + 1 + 1 1 + 1 +1 = 3 (odd)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

so we just proved it
break it up into cases Case 1: If n is even,... Case 2: If n is odd,...
i can't find any number that disproves it...
AriPotta you proved it works for those particular values, but you didn't prove it for all integers
2^2 + 2 + 1 4 + 2 + 1 = 7 (odd)
ok i'll try using cases
Case 1: n is an even integer Let k be any integer, so 2k is always even. Let n = 2k n^2 + n + 1 (2k)^2 + (2k) + 1 4k^2 + 2k + 1 2(2k^2 + k) + 1 2q + 1 ... Let q = 2k^2 + k (you can easily show that q is always an integer) So if n = 2k (ie if n is an even integer), then n^2 + n + 1 is equivalent to 2q + 1, which is an odd integer. I'll let you do case 2
thank you!
An even + an odd is an odd . an odd + odd is an even number, and an even + even is an even number. If n is odd n^2 is odd so we have an odd + odd + 1 which is the same as odd + even so it will be odd. If n is an even n^2 is even so n^2 +n will be even. If you add 1 to an even number it is odd. Aripotta has the right idea. Testing numbers works for odd and even in all cases.
np
thank you all of you!

Not the answer you are looking for?

Search for more explanations.

Ask your own question