Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

In the diagram of the park, ADF~BCF. The crosswalk at point A is about 20 yd long. A bridge across the pond will be built, from point B to point C. What will the length of the bridge be? Diagram in question...

Algebra
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

|dw:1350944261807:dw|
Since the 2 triangles are similar, their sides are proportional. You also know AD is 20 yards, since it tells you that is the crosswalk length at A. So the proportion is 50 / 120 = 20 / BC Or if you flip it over, 120 / 50 = BC / 20 Then you can solve for BC... 120 / 50 = BC / 20 (20)(120/50) = BC
thanks Jake I believe the answer is 48

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

That's correct... Glad to help :) Does it make sense? It's just a matter of setting up the proportions to match the corresponding parts of the triangles, then solving for the part you need.
It makes to me now :)) oh oh

Not the answer you are looking for?

Search for more explanations.

Ask your own question