Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

bayanhorani Group Title

i need to solve equation

  • 2 years ago
  • 2 years ago

  • This Question is Open
  1. bayanhorani Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    |dw:1351014321172:dw|

    • 2 years ago
  2. bayanhorani Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    |dw:1351014635037:dw|

    • 2 years ago
  3. Raja99 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    use equation i cant understand plz

    • one year ago
  4. er10 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Here, $$\lambda$$ is a repeated eigenvalue for the linear system $$\frac{d\,\mathbf{X}}{dt} = A\mathbf{X}$$ so if $$\mathbf{X}_1(t) = (\mathbf{w} + t\mathbf{v})e^{\lambda t}$$ satisfies the linear system of equations, then \[ \frac{d\, \mathbf{X}_1}{d t} = \frac{d\, }{dt} \left( (\mathbf{w} + t\mathbf{v})e^{\lambda t} \right) = \frac{d\, }{dt} \left( \mathbf{w}e^{\lambda t} + t\mathbf{v}e^{\lambda t} \right) = \lambda\mathbf{w}e^{\lambda t} + \mathbf{v}e^{\lambda t} + \lambda t \mathbf{v}e^{\lambda t} = A\mathbf{X}_1 \] So, by evaluating the matrix-vector multiplication on the far right hand-side, and factoring, we find \[ e^{\lambda t}(\lambda \mathbf{w} + \mathbf{v}) + te^{\lambda t}(\lambda \mathbf{v}) = A(\mathbf{w} + t\mathbf{v})e^{\lambda t} = e^{\lambda t}(A\mathbf{w}) + te^{\lambda t}(A\mathbf{v}) \] by equating like terms, \[ \lambda \mathbf{w} + \mathbf{v} = A\mathbf{w} \text{ and } \lambda \mathbf{v} = A\mathbf{v}.\] For the first equation we can solve for the desired \[ \mathbf{v} = A\mathbf{w} - \lambda \mathbf{w} = \mathbf{w}(A - \lambda I), \] so \[ \mathbf{v} = \mathbf{w}(A - \lambda I) \] as desired. I hope this helps!

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.