Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Would you expect to observe the Compton effect more readily with scattering targets composed of atom with high atomic number or those composed of atoms with low atomic number? Explain!

Physics - Fundamentals of Physics, I
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

@gerryliyana , I see you asked for my help four days ago, but I'm just seeing your question now. I hope it's still helpful. In short, when a photon collides with a particle, an electron for example, at an angle θ, the scattered photon will now possess less energy and a lower frequency, as a consequence. Also it changes momentum. Since it experiences a decreases in frequency, it's wavelength increases. If a photon with a given wavelength collides with a free electron at rest, at an angle θ, then it's scattered wavelength increases, and\[\lambda _{2}-\lambda _{1}=\frac{ h }{ m _{e}c }(1-\cos \theta )\]where the Δλ is the change in wavelength, m sub e is the mass of the free electron at rest, and h = 6.626 x 10 ˆ-34 is Planck's constant. From the equation you can observe that as the mass of the electron increases, the wavelength decreases.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question