Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

|2x-7|-1>0 solution or inequality ?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|2x - 7| > 1 So 2x - 7 > 1 or 2x - 7 < -1
So solution ?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Solve both equations.
^ "inequalities," not "equations," Grammar Nazi. ;-)
I don't get it -_-
Solve the inequalities as if they were equations.
@ParthKohli if I solve them they will get the same answer
Sorry, I had an absolute value equation running in my mind. lol
Not so, one equals 1, the other equals -1.
So it is a solution ?
There are two solutions because you have two equations (inequalities).
@CliffSedge I get that but my test is only asking me if it's a solution or an inequality
Treat 2x - 7 > 1 2x - 7 < -1 As if it were 2x - 7 = 1 2x - 7 = -1 and solve both for x.
Oh so that's the equation ?
"...my test is only asking me if it's a solution or an inequality " I don't understand that question. You can find a solution to the statement and the solution will be an inequality.
My book says solve for each inequality. If there is no solution write no solution
Ok, then solve the inequalities as I explained.

Not the answer you are looking for?

Search for more explanations.

Ask your own question