anonymous
  • anonymous
\[ f(x,y)=f(x_0,y_0)+(x-x_0)\frac{\partial f}{\partial x}+(y-y_0)\frac{\partial f}{\partial y}+\frac{1}{2!} ( (x-x_0)^2\frac{\partial^2 f}{\partial x^2} \] \[ +2(y-y_0)(x-x_0)\frac{\partial^2f}{\partial xy}+(y-y_0)^2\frac{\partial^2 f}{\partial y^2})+... \] Why?
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
I'm having trouble with getting the intuition behind the Taylor series when the function is multivariabled. I know that you can prove the Taylor series with integration by parts, but I'm not sure how you would use that here (if at all). I assume the answer to this question will be closely associated with the total differential of a multiplication variable to a high degree of approximation (I mean with dx^n dy^m lying about the place, where n>1 and/or m>1).
anonymous
  • anonymous
|dw:1351261479700:dw|
anonymous
  • anonymous
|dw:1351261612819:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
So all coefficients define by m,n derivatives of f(x,y)
anonymous
  • anonymous
I understand what it is saying, but why is the second assumption allowable? That is the essence of my question.

Looking for something else?

Not the answer you are looking for? Search for more explanations.