Got Homework?
Connect with other students for help. It's a free community.
Here's the question you clicked on:
 0 viewing
\[ f(x,y)=f(x_0,y_0)+(xx_0)\frac{\partial f}{\partial x}+(yy_0)\frac{\partial f}{\partial y}+\frac{1}{2!} ( (xx_0)^2\frac{\partial^2 f}{\partial x^2} \]
\[ +2(yy_0)(xx_0)\frac{\partial^2f}{\partial xy}+(yy_0)^2\frac{\partial^2 f}{\partial y^2})+... \]
Why?
 one year ago
 one year ago
\[ f(x,y)=f(x_0,y_0)+(xx_0)\frac{\partial f}{\partial x}+(yy_0)\frac{\partial f}{\partial y}+\frac{1}{2!} ( (xx_0)^2\frac{\partial^2 f}{\partial x^2} \] \[ +2(yy_0)(xx_0)\frac{\partial^2f}{\partial xy}+(yy_0)^2\frac{\partial^2 f}{\partial y^2})+... \] Why?
 one year ago
 one year ago

This Question is Closed

henpenBest ResponseYou've already chosen the best response.0
I'm having trouble with getting the intuition behind the Taylor series when the function is multivariabled. I know that you can prove the Taylor series with integration by parts, but I'm not sure how you would use that here (if at all). I assume the answer to this question will be closely associated with the total differential of a multiplication variable to a high degree of approximation (I mean with dx^n dy^m lying about the place, where n>1 and/or m>1).
 one year ago

mahmit2012Best ResponseYou've already chosen the best response.0
dw:1351261479700:dw
 one year ago

mahmit2012Best ResponseYou've already chosen the best response.0
dw:1351261612819:dw
 one year ago

mahmit2012Best ResponseYou've already chosen the best response.0
So all coefficients define by m,n derivatives of f(x,y)
 one year ago

henpenBest ResponseYou've already chosen the best response.0
I understand what it is saying, but why is the second assumption allowable? That is the essence of my question.
 one year ago
See more questions >>>
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.