Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

find 2 positive intergers, "a" and "b", such that: a+b = 1640 LCM[a,b] = 8400 my trial and error method got a right answer, but the teacher showed a pretty cool way to get it.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

\[8400=2^4.3^1.5^2.7^1\]\[1640=2^3~5^1~41^1\] \[\large a=2^{m_1}~3^{m_2}~5^{m_3}~7^{m_4}\]\[\large b=2^{n_1}~3^{n_2}~5^{n_3}~7^{n_4}\] \[\large a+b=(2^{m_1}~3^{m_2}~5^{m_3}~7^{m_4})~+~(2^{n_1}~3^{n_2}~5^{n_3}~7^{n_4})=2^3~5^1~41^1\] \[m_1,n_1\le4\]\[m_2,n_2\le1\]\[m_3,n_3\le2\]\[m_4,n_4\le1\] divide each side by common factors \(\large 2^3~5^1\)
\[\large \bar a+\bar b=(2^{m_1-3}~3^{m_2}~5^{m_3-1}~7^{m_4})~+~(2^{n_1-3}~3^{n_2}~5^{n_3-1}~7^{n_4})=41\] all exponents then reduce to possibilities of 0 or 1, and there are no common factors between a and b at this point therefore we can systematically go thru and find a solution
Oh boy.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

im not usually that impressed in math class, but i simply feel in love with this :)
It's surprising to hear that THE AMISTRE64 has a teacher!
lol, well it is college afterall. we cant just teach ourselves ;)
W-w-w-wait... dad in college?
\[\begin{matrix} 2&3&5&7&\bar a& \bar b\\ -&-&-&-&-&-\\ 0&0&0&0&1&210&\ne41\\ 0&0&0&1&7&30&\ne41\\ 0&0&1&0&5&42&\ne41\\ 0&0&1&1&35&6&=41&found\ it\\ 0&1&0&0\\ 0&1&0&1\\ 0&1&1&0\\ 0&1&1&1\\ \end{matrix}\]
\[a=\bar a~2^3~5=35(40)=1400\]\[b=\bar b~2^3~5=6(40)=240\]
way, waaayyyyy simpler than my trial and error ;)
im 5 years (fingers crossed) away from a masters in math

Not the answer you are looking for?

Search for more explanations.

Ask your own question