anonymous
  • anonymous
Solve the improper Integral:
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\int\limits_{0}^{\infty} \frac{ \ln (x) }{ x² + a² } dx\]
anonymous
  • anonymous
\[a >0\]
anonymous
  • anonymous
http://www.wolframalpha.com/input/?i=the+integration+of++ln%28x%29%2F%28x%5E2%2Ba%5E2%29+where+a+%3E+0

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ParthKohli
  • ParthKohli
Trigonometric sub.
anonymous
  • anonymous
any hint for the sub. ?
ParthKohli
  • ParthKohli
Hmm, here you let \(\rm x = a\tan \theta\) (right)?
anonymous
  • anonymous
yeah
hartnn
  • hartnn
do u know the answer? is it (pi/2a) ln (a) ??
ParthKohli
  • ParthKohli
Testing.
hartnn
  • hartnn
\(\large \int\limits_{0}^{\infty} \frac{ \ln (x) }{ x² + a² } dx\\ \large x=atan\theta, dx= a sec^2\theta d\theta,\theta =0 \: to \:\pi/2 \\\large \int \limits_{0}^{\pi/2}ln(a tan \theta)(d\theta/a)=I \\\large I=\int \limits_{0}^{\pi/2}ln(a tan (0+\pi/2-\theta)(d\theta/a)\\ \large I=\int \limits_{0}^{\pi/2}ln(a cot \theta)(d\theta/a) \\ \large 2I=\int \limits_{0}^{\pi/2}ln(a tan \theta)(d\theta/a)+\int \limits_{0}^{\pi/2}ln(a cot \theta)(d\theta/a) \\\large 2I=\int \limits_{0}^{\pi/2}ln(a^2)(d\theta/a)\\ \large I=\frac{\pi lna}{2a}\) getting pi/2a (ln a)...hope i did not do any mistake somewhere.....
anonymous
  • anonymous
thank you that's right, i did solved it with residue theorem and get the same result, thks!
hartnn
  • hartnn
ok, welcome ^_^

Looking for something else?

Not the answer you are looking for? Search for more explanations.