Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

How do I add fractions?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
Are the denominators the same?
No.
www.webmath.com/addfract.html

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

www.youtube.com/watch?v=lavgnJAkfKM
those might help
I don't like to watch videos because I never learn from them... :(
oh sorry then
\[\frac{a}{b}+\frac{c}{d}=\frac{a\times d+c\times b}{b\times d}\]
What @Zarkon did , is said to be use of LCM ..
If the denominator is not the same then you will have to find the most common one. then add the top numbers and keep the denominator same. Been awhile sence i done then.
|dw:1351266657384:dw|
\[{\heartsuit \over \spadesuit}+{\diamondsuit \over \clubsuit} = {\heartsuit\clubsuit + \diamondsuit \spadesuit \over \spadesuit \clubsuit}\]
LCM ---> Least common multiple just like I want to give you an example of LCM in addition of fractions : \[\large{\frac{3}{4} + \frac{4}{5} = ?}\] Now, to add these fractions , we need to take LCM of the denominators of both of the fractions... i.e. of 4 and 5 Multiples of 4 = 4,8,12,16,20,32,36,40 .... Multiples of 5 = 5,10,15,20,25,30,35,40... Common multiples = 20, 40 , ... Least common multiple = 20 So from this we get LCM of 4 and 5 is 20 Now divide 20 by 4 , you get 5, multiply 5 by the numerator of the first fraction i.e. 5 * 3 = 15 .Similarly for second fraction, divide 20 by 5, you get 4, multiply 4 by 4 = 16 \[\large{\frac{5*3 + 4*4}{20} = \frac{15+16}{20} = \frac{31}{20} }\]
Although, you can straightforwardly add the numerators if the denominators are same.
Why we use LCM is to get to a point where we can straightforwardly add the numerators.
SO what would 4/3 + 7/6 =
Get a common denominator.
Instead of LCM you can also do "common denominators" : \[\large{\frac{4}{3} + \frac{7}{6} = ? }\] Let us take 4/3 first : multiply denominators and numerators by 2 \[\large{\frac{4\times 2}{3\times 2} = \frac{8}{6}}\] So, we can also write 4/3 as : 8/6 Now let us take L: 7/6 See we have to get common denominators in both the fractions. we have one fraction as 8/6 and another one is 7/6 Their denominators are same i.e. 6 so we can just add numerators "now" : \[\large{\frac{8}{6} + \frac{7}{6} = \frac{8+7}{6} = \frac{15}{6}}\]
Note: Don't add denominators, only numerators are to be added.
@HorseCrazyGirlForever I hope you got it now, any confusion you have now?

Not the answer you are looking for?

Search for more explanations.

Ask your own question