arccos(cos(94pi/59))

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

arccos(cos(94pi/59))

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

HINT: \[\cos^{-1} (\cos x) = x\]
arccos(cos(94pi/59)) = 94pi/59
|dw:1351301061848:dw|

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

94pi/59 is in the 4th quad. so... 94pi/59 -pi = 35/59 pi
We know the range of the arc cosine function is limited to [0,pi], right? We know that 90pi/59 is pretty close to 90pi/60 or 3pi/2. The cos(3pi/2) is close to 0 The arccos(0) is pi/2 The reference angle for the 90pi/59 would be in quad 4 and measure 28/59 pi. SO I'm thiniking the answer to the problem would be 28pi/59|dw:1351301172847:dw|
Glad to see I was thinking about that correctly.
Oh sorry trans.. you were typing really long :C wasn't sure if you were going to paste anything. Didn't mean to step on yer toes there XD
OMG wrong lol. its 2pi - 94/59pi
ans: 24/59pi

Not the answer you are looking for?

Search for more explanations.

Ask your own question