Trig

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

asdfghjkl
|dw:1351307244010:dw|
This is called a right triangle

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Have you ever seen one of those?
\[\theta\]
|dw:1351307440466:dw|
\[(90^o- \theta)+ \theta+90^o\] =\[180^o\]
\[\sin(\theta)=\frac{opp }{hyp}=\frac{?}{c}\]
\[\sin(\theta)=\frac{opp}{hyp}=\frac{a}{c}\]
\[\cos(\theta)=\frac{adj}{hyp}=\]
\[\cos( \theta)=\frac{adj}{hyp}=\frac{b}{c}\]
\[\tan(\theta)=\frac{opp}{adj}=\]
\[\csc(\theta)=\frac{hyp}{opp}=\]
\[\csc(\theta)=\frac{c}{a} \] \[\csc(90^o-\theta)=\]
\[\csc(90^o-\theta)=\frac{c}{b}\] --- \[\sec(\theta)=\frac{hyp}{adj}\]
\[\cot(\theta)=\frac{adj}{opp}\]
Let's talk about Degrees to Degrees Minutes Seconds (DMS)
Degrees to DMS There are 60 minutes in one degree There are 60 seconds in one minute
So to convert \[34.344^o\] to DMS We bring down our whole part |dw:1351308566177:dw|
\[34^o 20' 38''=(34+\frac{20}{60}+\frac{38}{60^2})^o\]
60*60=3600
Get your answer round to the nearest thousandths
\[360^o=2 \pi \]
\[\text{ Degrees to radians: multiply by } \frac{\pi}{180^o}\] \[\text{ Radians to degrees: multiply by } \frac{180^o}{\pi}\]
|dw:1351309466300:dw|
|dw:1351309584660:dw|
|dw:1351309647808:dw|
|dw:1351309769126:dw|
|dw:1351309817135:dw|
|dw:1351309860784:dw|
\[1^2+1^2=c^2\]
\[2=c^2 => c=\sqrt{2}\]
|dw:1351310058285:dw|
\[\sin(45^o)=\]
\[\sin(45^o)=\cos(45^o)=\frac{1}{\sqrt{2}}\]
\[\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2}\]
|dw:1351310400186:dw|
|dw:1351310500474:dw|
|dw:1351310557732:dw|
\[1^2+b^2=2^2\]
\[1+b^2=4\] \[b^2=3\] \[b=\sqrt{3}\]
|dw:1351310692199:dw|
\[\cos(30^o)=\]
\[\cos(30^o)=\frac{\sqrt{3}}{2} ; \sin(30^o)=\frac{1}{2}\] \[\cos(60^o)=\frac{1}{2} ; \sin(60^o)=\frac{\sqrt{3}}{2}\]
|dw:1351310871440:dw|
|dw:1351310918579:dw|
|dw:1351310969007:dw|
|dw:1351311018341:dw|
|dw:1351311042973:dw|
|dw:1351311063891:dw|
|dw:1351311075030:dw|
\[\cos(\theta)=x ; \sin(\theta)=y\]
|dw:1351311187600:dw|
|dw:1351311240937:dw|
|dw:1351311289957:dw|
|dw:1351311343574:dw|
|dw:1351311501471:dw|
|dw:1351311562018:dw|
|dw:1351311662778:dw|
|dw:1351311723291:dw|