\[\lim_{n\rightarrow\infty}\frac{\sqrt[n]{n!}}{n}\]

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

\[\lim_{n\rightarrow\infty}\frac{\sqrt[n]{n!}}{n}\]

Calculus1
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

maybe like this: \[\sqrt[n]{n!}=\sqrt[n]{n(n-1)(n-2)\cdots1} =\sqrt[n]{n}\sqrt[n]{n-1}\cdots \sqrt[n]{1}=1\] so limit is equal to 0
Are you sure that \[\lim_{n\rightarrow\infty}\sqrt[n]{n!}=1\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

look the steps from my comment befor. It looks ok
all the roots at the right hand side: \[\sqrt[n]{n}=\sqrt[n]{n-1}=\cdots=\sqrt[n]{1}=1\]
so their product too
No, it's not ok. Because you multiply an infinite quantity or 1. As we know \(1^{\infty}={}?\).
\[1^{\infty} =1*1*\cdots*1=1\]
Very nice. What can you say about this pretty limit? \[\lim_{n\rightarrow\infty}\left(1+\frac1n\right)^n\]It is \(1^{\infty}\).
this happens when you talk about functions. The reason of indetermination of 1^infinity is because of that. But in this case there are no functions involved. That's my point
in this case there is just number one multiplyed infinitly many times. And it happens after the limit was taken
Ok. What about this? \[\lim_{n\rightarrow\infty}\sum_{k=1}^n\frac1n\]Is it 0?
this is a harmonic series. It is not convergent
your 1ยบ question was about sequences
Look at the denominator carefully please. I hopr you will try to get what I'm saying.
sry, but i don't
Can you find this? \[\lim_{n\rightarrow\infty}\sum_{k=1}^n\frac1n\]
another way to try this: \[\lim \sqrt[n]{\frac{n!}{n^n}} = 0\]
infinity
Can you show the way you solve it?
I don't remmeber the formal proof of n!/n^n =0, but it's evident, if you try a few first terms of this sequence. There are some posts about it if you google a bit
@myko, see this and tell me what is your mistake? http://www.wolframalpha.com/input/?i=Limit+%28n!%29^%281%2Fn%29%2Fn+n-%3Einfinity
@mahmit2012 a little help here?
|dw:1351370532404:dw|
very nice, my turn...
|dw:1351370740820:dw|
|dw:1351370823511:dw|
|dw:1351370856590:dw|
\[{\sqrt[n]{n!}\over n}=\exp\left(\frac1n\ln(n!)-\ln n\right)=\exp\left({n\ln n-n+O(n)-n\ln n\over n}\right)\]\[=\exp(-1)=\frac1e\]
*
ya I was wrong. Here is another way to solve it. As we know root test is stronger than cuotient test, so the folowing inequality holds: \[\lim \inf \frac{a_{n+1}}{a_{n}}\leq\lim \inf \sqrt[n]{a_{n}}\leq \lim \sup \sqrt[n]{a_{n}} \leq \lim \sup\frac{a_{n+1}}{a_{n}}\] let \[a_{n} = \frac{n!}{n^{n}}\] then \[\frac{a_{n+1}}{a_{n}}=\frac{1}{(1+\frac{1}{n})^{n}}=\frac{1}{e}\] this means that \[\lim \sqrt[n]{a_{n}} = \frac{1}{e}\]
@mahmit2012 \[\lim \frac{a_{n+1}}{a_{n}}=\lim \sqrt[n]{a_{n}}\] only if a_n is convergent, what is not implied in this question
Nice. But I have one more interesting method to find it. \[\lim_{n\rightarrow\infty} \frac{\sqrt[n]{n!}}{n}=\lim_{n\rightarrow\infty}\sqrt[n]{\frac{n!}{n^n}}=\lim_{n\rightarrow\infty}\sqrt[n]{\frac1n\cdot\frac2n\cdots\frac n n}=A\]\[\ln A=\lim_{n\rightarrow\infty}\frac1n(\ln\frac1n+\ln\frac2n+\ldots+\ln\frac n n)=\int_0^1\ln x dx=-1\]\[\lim_{n\rightarrow\infty} \frac{\sqrt[n]{n!}}{n}=A=e^{-1}=\frac1e\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question