anonymous
  • anonymous
f(x) x^3-8/x^2-4 , x not equal to 2, X not equal to -2 3, x=2 4, x= -2 at which point is the function continuous?
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
2 questions 1) is your equation\[f(x) = \frac{ x ^{3} - 8 }{ x ^{2} - 4 }\] with x not = 2 or -2? And 2) what do the second 2 lines mean? (3, x=2 and 4, x = -2)?
anonymous
  • anonymous
|dw:1351367741430:dw|
anonymous
  • anonymous
|dw:1351367907016:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Start by factoring the numerator and denominator. Hint: you will then be able to get the common factor of (x-2) to cancel.
anonymous
  • anonymous
okay
anonymous
  • anonymous
What do you get after factoring? Show your work.
anonymous
  • anonymous
(x-2) ( x^2+2x+4)/ (x+2)(x-2)
anonymous
  • anonymous
(x^2+2x+4)/(x+2)
anonymous
  • anonymous
So, the first line has the restriction of x not = 2 or -2 because the first line is not defined for those 2 values of x. So far, we have a max of 2 points of discontinuity (before going to lines 2 and 3). For line 2, looking at how x-2 cancelled out (you did that correctly! Good job!) We DEFINE f(2) = 3 and that is what the "factored out" equation would have given, so the overall function IS continuous at x=2. This leaves line 3 and x = -2 as the only possible point of discontinuity. The "factored out" equation would give 4/0, so the overall function is discontinuous only at x = -2.
anonymous
  • anonymous
okay,thanks a lot.
anonymous
  • anonymous
You're welcome! Medals are nice.

Looking for something else?

Not the answer you are looking for? Search for more explanations.