anonymous
  • anonymous
Determine if the given relation is also a function? {(7,-6),(-1,6),(8,-2),(0,4)}
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
baldymcgee6
  • baldymcgee6
What is the common "function test" we can use to check?
anonymous
  • anonymous
Idk, Functions are seriously throwing me for a loop right now.
baldymcgee6
  • baldymcgee6
Well, we can use something called the vertical line test... Have you heard of this?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I've heard of it but I can't recall exactly what it is.
baldymcgee6
  • baldymcgee6
Well, if you plot those points on a graph, then move a vertical line across the graph.. If the vertical line touches more than one point at any given time, it is NOT a function.
anonymous
  • anonymous
Okay so it is a function.
anonymous
  • anonymous
?
baldymcgee6
  • baldymcgee6
That is correct
anonymous
  • anonymous
Thank You
calculusfunctions
  • calculusfunctions
A function is an association between two or more variables, such that for each and every value of the independent variables, there exists exactly one value of the dependent variable, in a specified set called the domain of the function. A function with a single independent variable, is called a single variable function. A relation is a set of ordered pairs (x, y), in a single variable relation where the x is the independent variable in a set called the domain, and y is the dependent variable in a set called the range. In order for a relation to be a function of a single independent variable, for every x there must be one and only one y. @Needsomehelpplz

Looking for something else?

Not the answer you are looking for? Search for more explanations.