anonymous
  • anonymous
I am confused re: the chapter "derivative of an inverse function". How can the derivative of f^-1(x) be 1/the derivative of f(x)? Just looking at an example: the derivative of e^x is e^x... but the derivative of ln(x) sure as hell isn't 1/e^x.
OCW Scholar - Single Variable Calculus
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
the derivative of f^-1(x) is 1/the derivative of the inverse function, d{f -1(x)}/dx = 1 f '(f -1(x))
anonymous
  • anonymous
sorry i was wrong the derivative f^-1(x) is 1/the derivative of the function evaluated at the inverse. So in your case it's 1/(e^ln(x)).
Stacey
  • Stacey
|dw:1352268609073:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.