Researchers studying photoperiodism use the wingspanlebur as an experimental plant. The variable of interest, X, the number of hours of uninterrupted darkness required to produce flowering is normally distributed with a mean of 14.5 hours and standard deviation 1.0 hours.
c. What is the probability that out of a random sample of 20 wingspanleburs less than two require between 12 and 15 hours of uninterrupted darkness to produce flowering?
I got this far:
Let Y=# wingspanleburs requiring between 12 and 15 hours of uninterrupted darkness (out of 20)
Y~BIN(n=20, p=0.6853)
P(Y<2) = ?
But I'm unsure about how to use P(Y<2) to get the answer 4.0 x 10^ -9

Hey! We 've verified this expert answer for you, click below to unlock the details :)

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!

thank you

You're welcome :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.