You're filling a water balloon with a spherical shape. If the water is coming in at 4 cubic inches per second, how fast is the radius changing when the volume is 200 cubic inches? (answer: 0.0241 in/sec)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

You're filling a water balloon with a spherical shape. If the water is coming in at 4 cubic inches per second, how fast is the radius changing when the volume is 200 cubic inches? (answer: 0.0241 in/sec)

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1351471895315:dw|
@sweett2639 do you follow?
\[v= \frac{ 4 }{ 3 } \pi r ^{3}\]i understand that the volume of a sphere is and that\[\frac{ dv }{ dt } = 4 inches ^{3}/\sec\] but not much more than that

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

|dw:1351472335325:dw|
so you set 200 equal to v and moved the equasion around so that r is 3.628
|dw:1351472455417:dw|
Right, we know that the volume is 200 in^3 at the moment of interest, therefore we can find what the radius of the sphere is at that moment
|dw:1351472567598:dw|
everytime i try to calculate r, i get the wrong number
http://www.wolframalpha.com/input/?i=4%2F%284*pi*%283.628%29%5E2%29 just make sure you type it into the calc correctly.

Not the answer you are looking for?

Search for more explanations.

Ask your own question