At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!

yes I believe we can choose epsilon, since it is negation..

thanks it makes sense to me..

sin(1/x) must be greater than epsilon, and it is true, how about 1/(2kpi)

@satellite73
hi, satellite73, can you check my comment here

yes..

it should be I guess \[|x-a|\implies |f(x)-L|\ge \epsilon\]

yes this is what I know..

yes ..

but it is gonna be contradiction right, and we are gonna say f(x) is not cont. at x=0..

can I use my example to get contradiction..sin(1/x)=0 but greater than 1/2

not greater than.

i should have said \(\forall \delta>0\)
\(\exists k\) such that \(\frac{1}{(2k+1)\pi}<\delta\)

it makes more sense now..

be careful here, you cannot write
\[\sin(\frac{1}{x})=0\] that makes no sense

thanks.. it must be grater than 0

yeah, I thought something like that.. how about 5)ii)