Find the first 4 terms of the taylor series of sin x at x = pi/4.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the first 4 terms of the taylor series of sin x at x = pi/4.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

The first 4 derivatives are cos(x) then -sin(x) then -cos(x) and then sin(x)
sin(pi/4) + cos(pi/4) * (x-pi/4) -sin(pi/4) * (1/2!) (x-pi/4)^2 .....
is that it?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

pretty straightforward.. what was your question about?
that's the first 3 terms... you should be able to get the 4th now?
That does not look right though
well... I lied a bit... a few of those terms are zero...
but you can work from them... right?
f(x) = f(x0) + (x-x0)*f'(x0)/1! + (x-x0)^2*f"(x0)/2! + (x-x0)^3*f'"(x0)/3!
with x0 = pi/4, for f(x) = sinx --> f(pi/4) = sin(pi/4) = 1/2*sqrt(2) f'(x) = cosx --> f'(pi/4) = cos(pi/4) = 1/2*sqrt(2) f"(x) = -sinx --> f"(pi/4) = -sin(pi/4) = -1/2*sqrt(2) f'"(x) = -cosx --> f'"(pi/4) = -cos(pi/4) = -1/2*sqrt(2) now, just subtitute all numbers above to generally formula !!!

Not the answer you are looking for?

Search for more explanations.

Ask your own question