anonymous
  • anonymous
Find the first 4 terms of the taylor series of sin x at x = pi/4.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
The first 4 derivatives are cos(x) then -sin(x) then -cos(x) and then sin(x)
anonymous
  • anonymous
sin(pi/4) + cos(pi/4) * (x-pi/4) -sin(pi/4) * (1/2!) (x-pi/4)^2 .....
anonymous
  • anonymous
is that it?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
pretty straightforward.. what was your question about?
anonymous
  • anonymous
that's the first 3 terms... you should be able to get the 4th now?
anonymous
  • anonymous
That does not look right though
anonymous
  • anonymous
well... I lied a bit... a few of those terms are zero...
anonymous
  • anonymous
but you can work from them... right?
RadEn
  • RadEn
f(x) = f(x0) + (x-x0)*f'(x0)/1! + (x-x0)^2*f"(x0)/2! + (x-x0)^3*f'"(x0)/3!
RadEn
  • RadEn
with x0 = pi/4, for f(x) = sinx --> f(pi/4) = sin(pi/4) = 1/2*sqrt(2) f'(x) = cosx --> f'(pi/4) = cos(pi/4) = 1/2*sqrt(2) f"(x) = -sinx --> f"(pi/4) = -sin(pi/4) = -1/2*sqrt(2) f'"(x) = -cosx --> f'"(pi/4) = -cos(pi/4) = -1/2*sqrt(2) now, just subtitute all numbers above to generally formula !!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.