A community for students. Sign up today!
Here's the question you clicked on:
 0 viewing
 2 years ago
Why does (cos(x)1)/x go to 0 and sin(x)/x go to 1 as x go to 0? I can see the plots of that functions at wolframalpha, but I can't understand, why do they go to that values? Is there any algebraic proof?
 2 years ago
Why does (cos(x)1)/x go to 0 and sin(x)/x go to 1 as x go to 0? I can see the plots of that functions at wolframalpha, but I can't understand, why do they go to that values? Is there any algebraic proof?

This Question is Open

nickfrei
 2 years ago
Best ResponseYou've already chosen the best response.0If i understand your question correctly, you're asking why the limit as x tends to zero of (cos(x)1)/x is zero and sin(x)/x is one. If thats the case then it's because if you plug in numbers for x that are incredibly close to zero (say .001, .0001, .00001 and .001, .0001, .00001) you will find that the closer the x gets to zero the closer the function gets to zero and one for (cos(x)1)/x and sin(x)/x respectively.

angstrem1
 2 years ago
Best ResponseYou've already chosen the best response.0nickfrei, thanks for the answer, but I'd like to see if there exists some algebraic proof, the one not involving this 'brute force'.

nickfrei
 2 years ago
Best ResponseYou've already chosen the best response.0I understand what you're saying and i dont think there is a true algebraic way to solve it. The only thing that comes to mind would be the epsilon delta definition of limit and it's proof which i think may help you out but im not entirely sure about that. I'll provide some links if you want to look up more simply google epsilon delta definition of limit or epsilon delta proof of limit. http://www.math.utah.edu/~petersen/1210/LimitProofs.pdf http://tutorial.math.lamar.edu/Classes/CalcI/LimitProofs.aspx http://amath.colorado.edu/courses/1340/2009fall/Misc/deltaepsilon.pdf

calculusfunctions
 2 years ago
Best ResponseYou've already chosen the best response.2We know that\[\lim_{x \rightarrow 0}\frac{ \sin x }{ x }=1\]We use this fact to now evaluate\[\lim_{x \rightarrow 0}\frac{ \cos x 1 }{ x }\]Since we know the Pythagorean theorem sin²x + cos²x = 1 or 1  cos²x = sin²x. To achieve this result, we first multiply both the numerator and the denominator by cos x + 1. Thus\[\lim_{x \rightarrow 0}\frac{ \cos x 1 }{ x }\]\[=\lim_{x \rightarrow 0}(\frac{ \cos x 1 }{ x })(\frac{ \cos x +1 }{ \cos x +1 })\] \[=\lim_{x \rightarrow 0}\frac{ \cos ^{2}x 1 }{ x(\cos x +1) }\] \[=\lim_{x \rightarrow 0}\frac{(1\cos ^{2}x) }{ x(\cos x +1) }\] \[=\lim_{x \rightarrow 0}\frac{ \sin ^{2}x }{ x(\cos x +1) }\] \[=\lim_{x \rightarrow 0}\frac{ \sin x }{ x }⋅\lim_{x \rightarrow 0}\frac{ \sin x }{ \cos x +1 }\] \[=(1)(1)(0)\]Therefore\[\lim_{x \rightarrow 0}\frac{ \cos x 1 }{ x }=0\]

ortollj
 2 years ago
Best ResponseYou've already chosen the best response.0Hello linear approximation f(x)=f(x0)+f'(x0)*(xx0) http://ocw.mit.edu/courses/mathematics/1801scsinglevariablecalculusfall2010/partaapproximationandcurvesketching/session23linearapproximation/

angstrem1
 2 years ago
Best ResponseYou've already chosen the best response.0Thanks for your answers, I'm sorry for responding so late. calculusfunctions, why does \[\lim_{x \rightarrow 0}\frac{ \sin x }{ \cos x + 1 } = (1)(0)\] and how do we proof, that \[\lim_{x \rightarrow 0}\frac{ \sin x }{ x }=1\] nickfrei, thanks for the proofs of limits, but unfortunately I haven't taken the mathematical analysis course yet, so I still fill a bit uncomfortable with it's theorems (actually, I've used a wrong textbook to learn it and failed...).

calculusfunctions
 2 years ago
Best ResponseYou've already chosen the best response.2@angstrem1 what I said was\[(1)∙\lim_{x \rightarrow 0}\frac{ \sin x }{ x }∙\lim_{x \rightarrow 0}\frac{ \sin x }{ \cos x +1 }=(1)(1)(0)\] To prove that\[\lim_{x \rightarrow 0}\frac{ \sin x }{ x }=1\]Let's set up a table of values to evaluate (sin x)/x near 0. Hence in our table, x is any real number near zero, then sin x implies the sine of any angle whose radian measure is x. We will now calculate the onsided limits.In other words, we will calculate the limit values from the left and the right of zero. as x → 0 from the left x < 0 (sin x)/x 1 0.84147 0.5 0.95885 0.1 0.99833 0.01 0.99998 0.001 0.99999 We see that as x → 0 from the left, (sin x)/x → 1. Thus\[\lim_{x \rightarrow 0^{}}\frac{ \sin x }{ x }=1\] as x →0 from the right x > 0 (sin x)/x 1 0.84147 0.5 0.95885 0.1 0.99833 0.01 0.99998 0.001 0.99999 We see that as x → 0 from the right, (sin x)/x → 1. Thus\[\lim_{x \rightarrow 0^{+}}\frac{ \sin x }{ x }=1\]Since\[\lim_{x \rightarrow 0^{}}\frac{ \sin x }{ x }=1=\lim_{x \rightarrow 0^{+}}\frac{ \sin x }{ x }\]Therefore\[\lim_{x \rightarrow 0}\frac{ \sin x }{ x }=1\]

ortollj
 2 years ago
Best ResponseYou've already chosen the best response.0linear approximation f(x)=f(x0)+f'(x0)*(xx0) x0= 0 =>sin(x)=sin(0)+cos(0)*x=x then sin(x)/x=1

Stacey
 2 years ago
Best ResponseYou've already chosen the best response.1dw:1352270024401:dw To make the inequality work in all quadrants, then we need the absolute value of each expression.

Stacey
 2 years ago
Best ResponseYou've already chosen the best response.1dw:1352271033274:dw We want as x approaches zero, so we can look at \[\frac{ \pi }{ 2 } \le x \le \frac{ \pi }{ 2 }\] cos x is positive there and so is (sin x)/x.

mzirino
 2 years ago
Best ResponseYou've already chosen the best response.0There is a really excellent lecture on this exact subject here: http://ocw.mit.edu/courses/mathematics/1801scsinglevariablecalculusfall2010/partadefinitionandbasicrules/session8limitsofsineandcosine/

Brmathmajor
 2 years ago
Best ResponseYou've already chosen the best response.0I'm not sure which class you are in and what you have learned thus far but both of these are indeterminate forms meaning that the top and bottom approach 0 as x>0. From here we can simply use L'Hopital's rule and take the derivative of the top and bottom. Then you can simply plug in to get the limit.
Ask your own question
Ask a QuestionFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.