Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

The input X to a binary communication channel assumes the values +1 or −1 with probabilities 1/3 and 2/3 respectively. The output Y of the AWGN channel is given by Y = X + N where N is zero mean Gaussian noise with variance 2 n = 1. 1. Find the conditional pdf of Y given X = +1.

I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this and thousands of other questions

so obiviously Y=X+N X being 1 Y=1+N Y=1+N N being \[\phi(x-\mu/1)\] \[\phi(x-0/1)\] \[\phi(1-0/1)\]=\[\phi(1)\] we add to 1 on top so \[\phi(1)+1\] and divde by conditional probability 1/3
  • phi
I have not looked at this stuff, but my intuition is that if x is given as 1, the pdf for y should look like N, but centered at 1 (a gaussian with 1 mean, variance 2)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

  • phi
I'll put this subject on my "to do" list. In the meantime....
I think @phi is correct. As long as X is given as 1, then the probability of x occurring doesn't affect the pdf.
A more interesting (read: "hard") pdf is the overall pdf that encompasses both x = 1 and x = -1. Thankfully, that wasn't the question :)
my "to do" list seems to grow with every day I sign on here... (sigh)
"then the probability of x occurring doesn't affect the pdf." can you explain why?
I thought of it just like simple conditional probability... if P(x) = 0.5 and P(y) = 0.3, but the problem says, "Given x, what is the probability of y?", then the P(x) doesn't affect the probability of P(x|y), since you know x is given. Here, the fact that x = 1 occurs 1/3 of the time is irrelevant to the pdf if you are given that x = 1. This site might help you with Conditional Distributions. It might help you.
thank you so much for not ignoring my question
Your welcome. anytime.
thanks to jessica as well
So, I think if you run "x = 1" through the channel, then you would expect Y to look like 1, but it would have the shape of the pdf of the AWGN due to the channel. But the signal X = 1 would move the mean to be around 1 vs. around 0 which is what the channel looks like with no signal.
My comment earlier about the overall pdf was if you were trying to build a sensor/detector, and you didn't know whether X was +1 or -1, and you picked up an output signal Y = 0.2, you would have to decide if it was really an X= -1 input or if it was an X = + 1 input... the conditional pdfs would be overlapping.

Not the answer you are looking for?

Search for more explanations.

Ask your own question