Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Suppose that limit x-> a f(x)= infinity and limit x-> a g(x) = c, where c is a real number. Prove each statement. (a) lim x-> a [f(x) + g(x)] = infinity (b) lim x-> a [f(x)g(x)] = infinity if c > 0 (c) lim x-> a [f(x)g(x)] = negative infinity if c < 0 I need to prove it using the precise definition of a limit (i.e. no limit laws). Thanks so much!!!!!! I actually only need the proofs for a) and c)... if it helps, here's the link to the proof of a problem to (b): http://imageshack.us/photo/my-images/190/unledmkd.png/

Calculus1
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

A) When A is approaching a positive number it will approach Infinity Infinity + C = Infinity because Infinity + anything is infinity B} When the constant C Is greater than 0 [ positive non zero number ] then multiplying it by any number in positive infinity will just make the limit reach POSITIVE infinity C} Same thing as B But this time its less than 0 thus reaching negative infinity because -C [ negative any number ] * Any number > 0 = Negative large number[ infinity ] I hope this helps.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question