Looking for something else?

Not the answer you are looking for? Search for more explanations.

- anonymous

A 600-kg car is going over a curve with a radius of 120 meters that is banked at an angle of 25 degrees with a speed of 30 meters per second. The coefficient of static friction between the car and the road is 0.3. What is the normal force exerted by the road on the car?
a) 7240 N
b) 1590 N
c) 5330 N
d) 3430 N
e) 3620 N
Note: The speed is not Vmax (roughly 32 m/s). I've been working under the assumption that mgcos(theta) will be increased by the frictional component acting downward. I simply can't seem to get the solution.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this

and **thousands** of other questions.

Get your **free** account and access **expert** answers to this and **thousands** of other questions

- anonymous

- schrodinger

See more answers at brainly.com

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this

and **thousands** of other questions

- kunal

i think it will be mgcos(theta) only frictional force does not affevt the normal reaction from the road but will contribute in the total normal force on the body...

- anonymous

Strange. I posted this question a few weeks ago. The trick, evidently, is that the problem gives you too much information.
Instead of "adding" the coefficient of friction into your system of equations, solve the two equations in general. You will get answer choice A) 7240.

- anonymous

Here is the answer.

Looking for something else?

Not the answer you are looking for? Search for more explanations.