Quantcast

A community for students. Sign up today!

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

alliegator

  • 2 years ago

"Consider equation x^2y''-2xy'+2y=0, x>0 What differential equation does the Wronskian W(x)=W[y1,y2](x) for any pair of solutions of the above equation satisfy?"

  • This Question is Closed
  1. across
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    Abel's theorem states that if \(y_1(x)\) and \(y_2(x)\) are two solutions to\[y''+p(x)y'+q(x)y=0,\]then the Wronskian of the two solutions is\[W(y_1,y_2)(x)=c\exp\left[-\int p(x)\,dx\right].\]For this case, we have that \(p(x)=-2/x\). Hence\[W(y_1,y_2)(x)=cx^2.\]

  2. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Ask a Question
Find more explanations on OpenStudy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.