anonymous
  • anonymous
\[z ^{3}+2(1−6i)z ^{2}+2(1−12i)z−24i=0\] \[−ib ^{3}−2(1−6i)b ^{2}+2(1−12i)bi−24i=0\] \[−ib ^{3}−2b ^{2}+12ib ^{2}+2bi+24b−24i=0\] \[\Re=−2b ^{2}+24b=0\] \[\Re=−2b(b−12)=0\] \[\Im=(−b ^{3}+12b ^{2}+2b−24)i=0\] \[\Im=(−b ^{2}+2)(b−12)i=0\] Clean imaginary root \[z=12i\] How do I continue from here, the root with both Re and Im part, how do I find it?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@myininaya
phi
  • phi
You assumed z was pure imaginary, and found a consistent solution with b=12: so one root is 12i You can divide the original by z-12i to get z^2+2z+2 =0 you can factor this to find the remaining two roots

Looking for something else?

Not the answer you are looking for? Search for more explanations.