3psilon
  • 3psilon
I am terrible with Logs plz help
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

3psilon
  • 3psilon
\[f(x) = \log_{3}(\sqrt(x) + 3 \ \]
3psilon
  • 3psilon
Log base 3 square root x plus 3
3psilon
  • 3psilon
How do you find the inverse of this/

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
start with the fact that \(\log_3(\sqrt{x})=\frac{1}{2}\log_3(x)\)
anonymous
  • anonymous
is it the log of the whole thing?
3psilon
  • 3psilon
No just log base 3 square root x
anonymous
  • anonymous
i mean is it \[f(x)=\log_3(\sqrt{x}+3)\] or \[f(x)=\log_3(\sqrt{x})+3\]
3psilon
  • 3psilon
2nd one
anonymous
  • anonymous
ok then start with \[f(x)=\frac{1}{2}\log_3(x)+3\]
anonymous
  • anonymous
we can do the usual trick of writing \[y=\frac{1}{2}\log_3(x)+3\]then \[x=\frac{1}{2}\log_3(y)+3\] and solve for \(y\)
anonymous
  • anonymous
you need the steps?
3psilon
  • 3psilon
Yes please . I always get confused when there's stuff like log base 3
anonymous
  • anonymous
1) subtract 3 2) multiply by 2 3) raise 3 to everything
anonymous
  • anonymous
\[x=\frac{1}{2}\log_3(y)+3\] \[x-3=\frac{1}{2}\log_3(y)\] \[2x-6=\log_3(y)\] \[3^{2x-6}=y\]
anonymous
  • anonymous
last step because \[\log_b(y)=x\iff b^x=y\]
3psilon
  • 3psilon
Ohhh!!! Thank you so much !
anonymous
  • anonymous
yw

Looking for something else?

Not the answer you are looking for? Search for more explanations.