Callisto
  • Callisto
Deriving kinematic equations
Physics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Callisto
  • Callisto
For a = constant
Callisto
  • Callisto
\[v=\int a dt=at+c\]c = initial velocity So, \[v=u+at\]
anonymous
  • anonymous
good job

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
if a constan, a =0 v = u + at v = u + 0 v = u
Callisto
  • Callisto
\[x_f = \int v(t) dt=\int (\int a dt) dt = \int(at+u)dt = \frac{1}{2}at^2 + ut +c\], c = initial position So, \[x_f = ut +\frac{1}{2}at^2 + x_i\]\[x_f-x_i = ut +\frac{1}{2}at^2\]\[s = ut+\frac{1}{2}at^2\]s=displacement.
anonymous
  • anonymous
for a = 0; s = ut + 0.5 at^2 s = ut + 0 s = ut
Callisto
  • Callisto
From the third post, \[s=ut+\frac{1}{2}at^2\]\[at^2+2ut -2s = 0\]\[t^2 + \frac{2u}{a}t - \frac{2s}{a}=0\]\[(t+\frac{u}{a})^2 - \frac{u^2}{a^2}-\frac{2s}{a}=0\]\[(t+\frac{u}{a})^2 = \frac{u^2-2as}{a^2}\]\[t+\frac{u}{a} = \frac{\sqrt{u^2-2as}}{a}\]\[t = \frac{\sqrt{u^2-2as}-u}{a} -(1)\] Put (1) into v=u+at \[v =u+a(\frac{\sqrt{u^2-2as}-u}{a})\]\[v = u +\sqrt{u^2-2as}-u\]\[v^2 = u^2 +2as\]
Callisto
  • Callisto
\[x_f = \int v(t) dt = v_{ave}t+C\]c = initial position \[x_f = v_{ave}t +x_i\]\[x_f = \frac{1}{2}(u+v)t +x_i \]\[s = \frac{1}{2}(u+v)t\]displacement = s = \(x_f - x_i\)
Callisto
  • Callisto
Probably something wrong with the last post, which is s=(1/2) (u+v)t.
experimentX
  • experimentX
that's correct ... it assumes constant acceleration. that;s all.
Callisto
  • Callisto
Seriously?! I did it!?!
experimentX
  • experimentX
let me see how can i put it up logically.
experimentX
  • experimentX
|dw:1351833416633:dw|
experimentX
  • experimentX
now you just need to show that for constant accn V_av = (u+v)/2 ... wanna try it?
Callisto
  • Callisto
Huh!? I thought it's some maths.. Oh..How to start??
experimentX
  • experimentX
try using MVT
Callisto
  • Callisto
MVT.... again.../_\
experimentX
  • experimentX
well, you can do this without MVT ,,, i was wondering if i could improve my skills with MVT. try expanding v(t) in the expression of average.
experimentX
  • experimentX
or, V_av = s/t
Callisto
  • Callisto
expanding v(t)?
experimentX
  • experimentX
v(t) = u + at
experimentX
  • experimentX
or simply put ,,, average velocity = distance/time
Callisto
  • Callisto
Fail ._.
Callisto
  • Callisto
\[v_f= v_i+\int_0^{t_f} a dt=v_i + at\] So, \[v_f=v_i + at\]
Callisto
  • Callisto
\[x_f = x_i+\int_0^{t_f} v(t) dt= x_i+\int_0^{t_f} (v_i+at) dt = x_i+v_it+\frac{1}{2}at^2\] So, \[x_f = x_i+v_it+\frac{1}{2}at^2\] That is \[x_f - x_i = v_it+\frac{1}{2}at^2\]\[s= ut+\frac{1}{2}at^2\]
experimentX
  • experimentX
|dw:1351853269560:dw|
experimentX
  • experimentX
|dw:1351853406639:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.