roots of a trinomial \[ax^3+bx^2+cx+d=0\] let the roots be \(p,q,r\) When \(x\) is equal a root the equation equals zero \[(x-p)(x-q)(x-r)=0\] \[(x-p)(x^2-(q+r)x+qr)=0\] \[x\left(x^2-(q+r)x+qr\right)-p\left(x^2-(q+r)x+qr\right)=0\] \[\left(x^3-(q+r)x^2+(qr)x\right)-\left(px^2-p(q+r)x-qpr\right)=0\] \[x^3-(p+q+r)x^2+(qr+pq+pr)x-pqr=0\] comparing with \[x^3+\frac bax^2+\frac cax+\frac da=0\] \[-(p+q+r)=\frac ba\qquad\text{the sum of the roots is } -\frac ba\] \[(qr+pq+pr)=\frac ca\qquad\text{sum of products of pairs of the roots is } \frac ca\] \[-pqr=\frac da\qquad \text{the product of the roots is} -\frac da \]

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

roots of a trinomial \[ax^3+bx^2+cx+d=0\] let the roots be \(p,q,r\) When \(x\) is equal a root the equation equals zero \[(x-p)(x-q)(x-r)=0\] \[(x-p)(x^2-(q+r)x+qr)=0\] \[x\left(x^2-(q+r)x+qr\right)-p\left(x^2-(q+r)x+qr\right)=0\] \[\left(x^3-(q+r)x^2+(qr)x\right)-\left(px^2-p(q+r)x-qpr\right)=0\] \[x^3-(p+q+r)x^2+(qr+pq+pr)x-pqr=0\] comparing with \[x^3+\frac bax^2+\frac cax+\frac da=0\] \[-(p+q+r)=\frac ba\qquad\text{the sum of the roots is } -\frac ba\] \[(qr+pq+pr)=\frac ca\qquad\text{sum of products of pairs of the roots is } \frac ca\] \[-pqr=\frac da\qquad \text{the product of the roots is} -\frac da \]

Algebra
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1351834318182:dw|
|dw:1351834441300:dw|
I divided to a.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

what about complex solutions
|dw:1351834556416:dw|
i guess a trinomial always has at least one real root
|dw:1351834728740:dw|
|dw:1351834848416:dw|
if the trinomial has real co-efficients, then complex roots occur in pairs, hence it must have atleast 1 real solution .
|dw:1351834939890:dw|
i see
|dw:1351835035013:dw|
|dw:1351835192802:dw|
|dw:1351835381933:dw|
this is the general for all n-order polynomial equation.
awesome
notice the sign change everytime, product of all roots = \( (-1)^n a_0/a_n \)
|dw:1351835549510:dw|
I should mention that there are all real and complex roots in formulas.
|dw:1351839125496:dw|
|dw:1351839193349:dw|

Not the answer you are looking for?

Search for more explanations.

Ask your own question