• anonymous
What are the max and min possible values of x2 + y 2 if x+y =1 and x and y are nonnegative? What inequality between x2 + y 2 and (x+y)2 does this yield that holds for arbitrary non-negative numbers x and y?
MIT 18.01 Single Variable Calculus (OCW)
  • jamiebookeater
I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this
and thousands of other questions

  • anonymous
\[(1)^2=x^2+2xy+y^2\] \[x^2+y^2=1-2xy\] min
  • anonymous
\[-2y-2x=0\] \[x=y\] max 1/2 min ?
  • Stacey
Because x+y=1 and the variables cannot be negative \[0 \le x \le1\]\[0 \le y \le1\]Also y=1-x, so \[y^{2}=(1-x)^{2}=1-2x+x ^{2}\]Substitute that into your first equation to obtain \[1-2x+2x ^{2}\]Graphing this with the domain or using the derivative, you should be able to find the max and min.

Looking for something else?

Not the answer you are looking for? Search for more explanations.