UnkleRhaukus
  • UnkleRhaukus
\[\int\limits_0^1\sqrt{\frac{1-x^2}{1+x^2}}\cdot\text dx\]
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*} \\&\int\limits_0^1\sqrt{\frac{1-x^2}{1+x^2}}\cdot\text dx\\ \\&=\int\limits_0^1{(1-x^2)}^{1/2}{(1+x^2)}^{-1/2}\cdot\text dx\\ \\&\text{let}\qquad x^2=u;\qquad x=u^{1/2},\qquad\text d x=\frac 12u^{-1/2}\cdot\text du\\ \\&=\int\limits_0^1{(1-u)}^{1/2}{\left(1+u \right)^{-1/2}}\cdot\frac 12 u ^{-1/2}\cdot\text du\\ \\&=\frac12\int\limits_0^1{(1-u)}^{1/2}{\left(u(1+u) \right)^{-1/2}}\cdot\text du\\ \\&=\frac12\int\limits_0^1{\frac{(1-u)^{1/2}}{\left(u+u^2 \right)^{1/2}}}\cdot\text du\\ \\&\\ \\&\\ \\&=\qquad\color{red}{???}\\ \\&\\ \\&=\frac{1}{2}\left(\frac{\text B\left(\frac12,\frac14\right)}{2}-\text B\left(-\frac12,\frac34\right)\right)\\ \\&=\frac{1}{4}\text B\left(\frac12,\frac14\right)-\frac{1}{2}\text B\left(-\frac12,\frac34\right)\\ \\&=\frac{1}{4}\left(\frac{\Gamma\left(\frac12\right)\Gamma \left(\frac14\right)}{\Gamma\left(\frac34\right)}\right)-\left(\frac{\Gamma\left(\frac12\right)\Gamma \left(\frac34\right)}{\Gamma\left(\frac14\right)}\right)\\ \\&=\frac{1}{4}\sqrt\pi\left(\frac{\Gamma \left(\frac14\right)}{\Gamma\left(\frac34\right)}-4\frac{\Gamma\left(\frac34\right)}{\Gamma\left(\frac14\right)}\right)\\ \\&\approx0.712\\ \end{align*}\]
klimenkov
  • klimenkov
http://en.wikipedia.org/wiki/Beta_function
UnkleRhaukus
  • UnkleRhaukus
\[\text B(m,n)=\int\limits_0^1x^{m-1}(1-x)^{n-1} \cdot\text d x\]\[\qquad=\int\limits_0^\infty \frac{y^{n-1}}{(1+y)^{m+n}}\cdot\text d y\]\[\quad=2\int\limits_0^{\pi/2} \cos^{2m-1}(\theta) \sin^{2n-1}(\theta)\cdot\text d \theta\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

klimenkov
  • klimenkov
Is it a text from a book?
UnkleRhaukus
  • UnkleRhaukus
the first line is from a book \[\begin{align*}\\&\int\limits_0^1\sqrt{\frac{1-x^2}{1+x^2}}\cdot\text dx\\ \\&=\frac{1}{4}\sqrt\pi\left(\frac{\Gamma \left(\frac14\right)}{\Gamma\left(\frac34\right)}-4\frac{\Gamma\left(\frac34\right)}{\Gamma\left(\frac14\right)}\right)\\\end{align*} \]and this is answer at the back of the book
UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*} \\&\int\limits_0^1\sqrt{\frac{1-x^2}{1+x^2}}\cdot\text dx\\ \\&x^2=\cos(2\theta)\qquad\text dx=\frac{-\sin(2\theta)}x\text d\theta\\ \\&x=0\rightarrow\theta=\pi\qquad x=1\rightarrow\theta=0\\ \\&\int\limits_\pi^0\sqrt{\frac{1-\cos^2(2\theta)}{1+\cos^2(2\theta)}}\cdot\frac{-\sin(2\theta)}{\sqrt{\cos(2\theta)}}\text d\theta\\ \end{align*}\]
UnkleRhaukus
  • UnkleRhaukus
opsi
UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*} \\&\int\limits_0^1\sqrt{\frac{1-x^2}{1+x^2}}\cdot\text dx\\ \\&x^2=\cos(2\theta)\\ \\&\text dx=\frac{-\sin(2\theta)}x\text d\theta\\ \\&x=0\rightarrow\theta=\pi\qquad x=1\rightarrow\theta=0\\ \\&\int\limits_\pi^0\sqrt{\frac{1-\cos(2\theta)}{1+\cos(2\theta)}}\cdot\frac{-\sin(2\theta)}{\sqrt{\cos(2\theta)}}\text d\theta\\ \end{align*}\]
UnkleRhaukus
  • UnkleRhaukus
im not sure how to simplify all that trig
hartnn
  • hartnn
\(\2sin^2x=1-\cos2x\)
hartnn
  • hartnn
\(2\cos^2x=1+\cos2x\)
hartnn
  • hartnn
\(\sin2x=2\sin x\cos x\)
hartnn
  • hartnn
so u get \(\large \int_0^\pi2\frac{\sin^2\theta}{\sqrt{\cos2\theta}}d\theta\)
hartnn
  • hartnn
not sure how to proceed further with that.....
UnkleRhaukus
  • UnkleRhaukus
looks good
hartnn
  • hartnn
to get limits 0 to pi/2, we have put theta = 2x and have to deal with sqrt(cos 4x) in denominator..... or we can try splitting integral from 0 tp pi/2 and pi/2 to pi and some how convert 2nd integral also to 0 to pi/2
hartnn
  • hartnn
so that we can use beta function
hartnn
  • hartnn
i think splitting will help, in 2nd integral, we can put theta = alpha - pi/2
hartnn
  • hartnn
\(\large \int_0^{\pi/2}2\frac{\sin^2\theta}{\sqrt{\cos2\theta}}d\theta+\int_0^{\pi/2}2\frac{\cos^2\theta}{\sqrt{-cos2\theta}}d\theta\) oh dear....
hartnn
  • hartnn
i think that didn't help much...:(
UnkleRhaukus
  • UnkleRhaukus
its almost in the form of the Beta function !
hartnn
  • hartnn
1)what about 2theta ? 2) what about minus sign inside sqrt in 2nd integral....imaginary!
hartnn
  • hartnn
i may have done small/sign mistake, viewers plz verify...
UnkleRhaukus
  • UnkleRhaukus
\[2\int\limits^\pi_0\frac{\sin^2(\theta)}{\sqrt{\cos(2\theta)}}\text d\theta\]
UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*} \\&\int\limits_\pi^0\sqrt{\frac{1-\cos(2\theta)}{1+\cos(2\theta)}}\cdot\frac{-\sin(2\theta)}{\sqrt{\cos(2\theta)}}\text d\theta\\ \\&2\sin^2(x)=1-\cos(2x)&2\cos^2(x)=1+\cos(2x)\\\\&\sin(2x)=2\sin(x)\cos(x)&\cos(2x)=\cos^2 (x)-\sin^2(x)\\ \\&\int\limits_\pi^0\sqrt{\frac{2\sin^2\theta }{2\cos^2\theta}}\cdot\frac{-2\sin(\theta)\cos(\theta)}{\sqrt{\cos(2\theta)}}\text d\theta\\ \\&2\int\limits^\pi_0\tan(\theta)\cdot\frac{\sin(\theta)\cos(\theta)}{\sqrt{\cos(2\theta)}}\text d\theta\\ \\&2\int\limits^\pi_0\frac{\sin^2(\theta)}{\sqrt{\cos(2\theta)}}\text d\theta\\ \\&\text{let } \theta=2\phi\qquad\text d\theta =2\text d\phi\\ \\&\theta=0\rightarrow\phi=0\qquad\theta=\pi\rightarrow\phi=\pi/2\\ \\&2\int\limits_0^{\pi/2}\frac{\sin^2(2\phi)}{\sqrt{\cos(4\phi)}}2\text d\phi\\ \\&4\int\limits_0^{\pi/2}\frac{\sin^2(2\phi)}{\sqrt{\cos(4\phi)}}\text d\phi\\\end{align*}\]
hartnn
  • hartnn
yeah, as i said, now we have to deal with cos 4x
anonymous
  • anonymous
\[x = \sin \theta \] \[\int\limits_{}^{}\frac{ \sqrt{1-\sin ^{2}}\theta }{ \sqrt{1+\sin ^{2}\theta} } . \cos \theta d \theta \] \[\int\limits_{}^{}\frac{ \cos ^{2}\theta }{ \sqrt{\frac{ 2-(1-\cos2\theta) }{ 2 }} }\] \[\int\limits_{}^{}\frac{ \cos ^{2}\theta }{ \sin \theta } d \theta \] \[\int\limits_{}^{} \cot \theta \cos \theta d \theta \]
hartnn
  • hartnn
how is \(\sqrt{1+\sin^2 \theta}=\sin \theta\) @Eda2012
anonymous
  • anonymous
@hartnn sorry...careless mistakes
UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*} \\&\int\limits_0^1\sqrt{\frac{1-x^2}{1+x^2}}\cdot\text dx\\ \\&=\int\limits_0^1\sqrt{\frac{1-x^2}{1+x^2}}\times\sqrt{\frac{1-x^2}{1-x^2}}\cdot\text dx\\ \\&=\int\limits_0^1\frac{1-x^2}{\sqrt{1-x^4}}\cdot\text dx\\ \\&=\int\limits_0^1(1-x^4)^{-1/2}\cdot\text dx-\int\limits_0^1x^2(1-x^4)^{-1/2}\text dx\\ \\\text{let }x=u^{1/4}\qquad&\text dx=\frac14 u^{-3/4}\text du\\ \\&\small =\int\limits_0^1(1-u)^{-1/2}\cdot\frac14 u^{-3/4}\text du-\int\limits_0^1u^{1/2}(1-u)^{-1/2}\cdot\frac14 u^{-3/4}\text du\\ \\&=\frac14\int\limits_0^1u^{-3/4}(1-u)^{-1/2}\cdot \text du-\frac14\int\limits_0^1u^{-1/4}(1-u)^{-1/2}\cdot\text du\\ \\\text B(m,n)=\int\limits_0^1t^{m-1}(1-t)^{n-1} \cdot\text d t\\ \\m_1-1=-3/4\qquad& n_1-1=-1/2&\qquad \qquad\qquad m_2-1=-1/4\qquad n_2-1=-1/2\\ \\m_1=1/4\qquad \qquad & n_1=1/2&\qquad\qquad\qquad m_2=3/4\qquad\qquad n_2=1/2\\ \\&=\frac14\text B\left(\frac 14,\frac12\right)-\frac14\text B\left(\frac34,\frac12\right)\\ \\&=\frac14\text B\left(\frac 14,\frac12\right)-\frac14\text B\left(\frac34,\frac12\right)\\ \\&=\frac 14\left(\frac{\Gamma(\frac 14)\Gamma(\frac 12)}{\Gamma(\frac 34)}-\frac{\Gamma(\frac34)\Gamma(\frac 12)}{\Gamma(\frac 54)}\right)\\ \\&=\frac {\sqrt \pi}4\left(\frac{\Gamma(\frac 14)}{\Gamma(\frac 34)}-\frac{\Gamma(\frac34)}{\Gamma(\frac 54)}\right)\\ \\&=\frac {\sqrt \pi}4\left(\frac{\Gamma(\frac 14)}{\Gamma(\frac 34)}-\frac{\Gamma(\frac34)}{\frac 14\Gamma(\frac 14)}\right)\\ \\&=\frac {\sqrt \pi}4\left(\frac{\Gamma(\frac 14)}{\Gamma(\frac 34)}-4\frac{\Gamma(\frac34)}{\Gamma(\frac 14)}\right)\\ \end{align*}\]
anonymous
  • anonymous
|dw:1352086256918:dw|
anonymous
  • anonymous
|dw:1352086377803:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.