Quantcast

A community for students. Sign up today!

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

UnkleRhaukus

  • 2 years ago

\[\int\limits_0^1\sqrt{\frac{1-x^2}{1+x^2}}\cdot\text dx\]

  • This Question is Closed
  1. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\begin{align*} \\&\int\limits_0^1\sqrt{\frac{1-x^2}{1+x^2}}\cdot\text dx\\ \\&=\int\limits_0^1{(1-x^2)}^{1/2}{(1+x^2)}^{-1/2}\cdot\text dx\\ \\&\text{let}\qquad x^2=u;\qquad x=u^{1/2},\qquad\text d x=\frac 12u^{-1/2}\cdot\text du\\ \\&=\int\limits_0^1{(1-u)}^{1/2}{\left(1+u \right)^{-1/2}}\cdot\frac 12 u ^{-1/2}\cdot\text du\\ \\&=\frac12\int\limits_0^1{(1-u)}^{1/2}{\left(u(1+u) \right)^{-1/2}}\cdot\text du\\ \\&=\frac12\int\limits_0^1{\frac{(1-u)^{1/2}}{\left(u+u^2 \right)^{1/2}}}\cdot\text du\\ \\&\\ \\&\\ \\&=\qquad\color{red}{???}\\ \\&\\ \\&=\frac{1}{2}\left(\frac{\text B\left(\frac12,\frac14\right)}{2}-\text B\left(-\frac12,\frac34\right)\right)\\ \\&=\frac{1}{4}\text B\left(\frac12,\frac14\right)-\frac{1}{2}\text B\left(-\frac12,\frac34\right)\\ \\&=\frac{1}{4}\left(\frac{\Gamma\left(\frac12\right)\Gamma \left(\frac14\right)}{\Gamma\left(\frac34\right)}\right)-\left(\frac{\Gamma\left(\frac12\right)\Gamma \left(\frac34\right)}{\Gamma\left(\frac14\right)}\right)\\ \\&=\frac{1}{4}\sqrt\pi\left(\frac{\Gamma \left(\frac14\right)}{\Gamma\left(\frac34\right)}-4\frac{\Gamma\left(\frac34\right)}{\Gamma\left(\frac14\right)}\right)\\ \\&\approx0.712\\ \end{align*}\]

  2. klimenkov
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    http://en.wikipedia.org/wiki/Beta_function

  3. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\text B(m,n)=\int\limits_0^1x^{m-1}(1-x)^{n-1} \cdot\text d x\]\[\qquad=\int\limits_0^\infty \frac{y^{n-1}}{(1+y)^{m+n}}\cdot\text d y\]\[\quad=2\int\limits_0^{\pi/2} \cos^{2m-1}(\theta) \sin^{2n-1}(\theta)\cdot\text d \theta\]

  4. klimenkov
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Is it a text from a book?

  5. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    the first line is from a book \[\begin{align*}\\&\int\limits_0^1\sqrt{\frac{1-x^2}{1+x^2}}\cdot\text dx\\ \\&=\frac{1}{4}\sqrt\pi\left(\frac{\Gamma \left(\frac14\right)}{\Gamma\left(\frac34\right)}-4\frac{\Gamma\left(\frac34\right)}{\Gamma\left(\frac14\right)}\right)\\\end{align*} \]and this is answer at the back of the book

  6. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\begin{align*} \\&\int\limits_0^1\sqrt{\frac{1-x^2}{1+x^2}}\cdot\text dx\\ \\&x^2=\cos(2\theta)\qquad\text dx=\frac{-\sin(2\theta)}x\text d\theta\\ \\&x=0\rightarrow\theta=\pi\qquad x=1\rightarrow\theta=0\\ \\&\int\limits_\pi^0\sqrt{\frac{1-\cos^2(2\theta)}{1+\cos^2(2\theta)}}\cdot\frac{-\sin(2\theta)}{\sqrt{\cos(2\theta)}}\text d\theta\\ \end{align*}\]

  7. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    opsi

  8. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\begin{align*} \\&\int\limits_0^1\sqrt{\frac{1-x^2}{1+x^2}}\cdot\text dx\\ \\&x^2=\cos(2\theta)\\ \\&\text dx=\frac{-\sin(2\theta)}x\text d\theta\\ \\&x=0\rightarrow\theta=\pi\qquad x=1\rightarrow\theta=0\\ \\&\int\limits_\pi^0\sqrt{\frac{1-\cos(2\theta)}{1+\cos(2\theta)}}\cdot\frac{-\sin(2\theta)}{\sqrt{\cos(2\theta)}}\text d\theta\\ \end{align*}\]

  9. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    im not sure how to simplify all that trig

  10. hartnn
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 4

    \(\2sin^2x=1-\cos2x\)

  11. hartnn
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 4

    \(2\cos^2x=1+\cos2x\)

  12. hartnn
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 4

    \(\sin2x=2\sin x\cos x\)

  13. hartnn
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 4

    so u get \(\large \int_0^\pi2\frac{\sin^2\theta}{\sqrt{\cos2\theta}}d\theta\)

  14. hartnn
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 4

    not sure how to proceed further with that.....

  15. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    looks good

  16. hartnn
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 4

    to get limits 0 to pi/2, we have put theta = 2x and have to deal with sqrt(cos 4x) in denominator..... or we can try splitting integral from 0 tp pi/2 and pi/2 to pi and some how convert 2nd integral also to 0 to pi/2

  17. hartnn
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 4

    so that we can use beta function

  18. hartnn
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 4

    i think splitting will help, in 2nd integral, we can put theta = alpha - pi/2

  19. hartnn
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 4

    \(\large \int_0^{\pi/2}2\frac{\sin^2\theta}{\sqrt{\cos2\theta}}d\theta+\int_0^{\pi/2}2\frac{\cos^2\theta}{\sqrt{-cos2\theta}}d\theta\) oh dear....

  20. hartnn
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 4

    i think that didn't help much...:(

  21. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    its almost in the form of the Beta function !

  22. hartnn
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 4

    1)what about 2theta ? 2) what about minus sign inside sqrt in 2nd integral....imaginary!

  23. hartnn
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 4

    i may have done small/sign mistake, viewers plz verify...

  24. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \[2\int\limits^\pi_0\frac{\sin^2(\theta)}{\sqrt{\cos(2\theta)}}\text d\theta\]

  25. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\begin{align*} \\&\int\limits_\pi^0\sqrt{\frac{1-\cos(2\theta)}{1+\cos(2\theta)}}\cdot\frac{-\sin(2\theta)}{\sqrt{\cos(2\theta)}}\text d\theta\\ \\&2\sin^2(x)=1-\cos(2x)&2\cos^2(x)=1+\cos(2x)\\\\&\sin(2x)=2\sin(x)\cos(x)&\cos(2x)=\cos^2 (x)-\sin^2(x)\\ \\&\int\limits_\pi^0\sqrt{\frac{2\sin^2\theta }{2\cos^2\theta}}\cdot\frac{-2\sin(\theta)\cos(\theta)}{\sqrt{\cos(2\theta)}}\text d\theta\\ \\&2\int\limits^\pi_0\tan(\theta)\cdot\frac{\sin(\theta)\cos(\theta)}{\sqrt{\cos(2\theta)}}\text d\theta\\ \\&2\int\limits^\pi_0\frac{\sin^2(\theta)}{\sqrt{\cos(2\theta)}}\text d\theta\\ \\&\text{let } \theta=2\phi\qquad\text d\theta =2\text d\phi\\ \\&\theta=0\rightarrow\phi=0\qquad\theta=\pi\rightarrow\phi=\pi/2\\ \\&2\int\limits_0^{\pi/2}\frac{\sin^2(2\phi)}{\sqrt{\cos(4\phi)}}2\text d\phi\\ \\&4\int\limits_0^{\pi/2}\frac{\sin^2(2\phi)}{\sqrt{\cos(4\phi)}}\text d\phi\\\end{align*}\]

  26. hartnn
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 4

    yeah, as i said, now we have to deal with cos 4x

  27. Eda2012
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    \[x = \sin \theta \] \[\int\limits_{}^{}\frac{ \sqrt{1-\sin ^{2}}\theta }{ \sqrt{1+\sin ^{2}\theta} } . \cos \theta d \theta \] \[\int\limits_{}^{}\frac{ \cos ^{2}\theta }{ \sqrt{\frac{ 2-(1-\cos2\theta) }{ 2 }} }\] \[\int\limits_{}^{}\frac{ \cos ^{2}\theta }{ \sin \theta } d \theta \] \[\int\limits_{}^{} \cot \theta \cos \theta d \theta \]

  28. hartnn
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 4

    how is \(\sqrt{1+\sin^2 \theta}=\sin \theta\) @Eda2012

  29. Eda2012
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    @hartnn sorry...careless mistakes

  30. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\begin{align*} \\&\int\limits_0^1\sqrt{\frac{1-x^2}{1+x^2}}\cdot\text dx\\ \\&=\int\limits_0^1\sqrt{\frac{1-x^2}{1+x^2}}\times\sqrt{\frac{1-x^2}{1-x^2}}\cdot\text dx\\ \\&=\int\limits_0^1\frac{1-x^2}{\sqrt{1-x^4}}\cdot\text dx\\ \\&=\int\limits_0^1(1-x^4)^{-1/2}\cdot\text dx-\int\limits_0^1x^2(1-x^4)^{-1/2}\text dx\\ \\\text{let }x=u^{1/4}\qquad&\text dx=\frac14 u^{-3/4}\text du\\ \\&\small =\int\limits_0^1(1-u)^{-1/2}\cdot\frac14 u^{-3/4}\text du-\int\limits_0^1u^{1/2}(1-u)^{-1/2}\cdot\frac14 u^{-3/4}\text du\\ \\&=\frac14\int\limits_0^1u^{-3/4}(1-u)^{-1/2}\cdot \text du-\frac14\int\limits_0^1u^{-1/4}(1-u)^{-1/2}\cdot\text du\\ \\\text B(m,n)=\int\limits_0^1t^{m-1}(1-t)^{n-1} \cdot\text d t\\ \\m_1-1=-3/4\qquad& n_1-1=-1/2&\qquad \qquad\qquad m_2-1=-1/4\qquad n_2-1=-1/2\\ \\m_1=1/4\qquad \qquad & n_1=1/2&\qquad\qquad\qquad m_2=3/4\qquad\qquad n_2=1/2\\ \\&=\frac14\text B\left(\frac 14,\frac12\right)-\frac14\text B\left(\frac34,\frac12\right)\\ \\&=\frac14\text B\left(\frac 14,\frac12\right)-\frac14\text B\left(\frac34,\frac12\right)\\ \\&=\frac 14\left(\frac{\Gamma(\frac 14)\Gamma(\frac 12)}{\Gamma(\frac 34)}-\frac{\Gamma(\frac34)\Gamma(\frac 12)}{\Gamma(\frac 54)}\right)\\ \\&=\frac {\sqrt \pi}4\left(\frac{\Gamma(\frac 14)}{\Gamma(\frac 34)}-\frac{\Gamma(\frac34)}{\Gamma(\frac 54)}\right)\\ \\&=\frac {\sqrt \pi}4\left(\frac{\Gamma(\frac 14)}{\Gamma(\frac 34)}-\frac{\Gamma(\frac34)}{\frac 14\Gamma(\frac 14)}\right)\\ \\&=\frac {\sqrt \pi}4\left(\frac{\Gamma(\frac 14)}{\Gamma(\frac 34)}-4\frac{\Gamma(\frac34)}{\Gamma(\frac 14)}\right)\\ \end{align*}\]

  31. mahmit2012
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    |dw:1352086256918:dw|

  32. mahmit2012
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    |dw:1352086377803:dw|

  33. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Ask a Question
Find more explanations on OpenStudy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.