anonymous
  • anonymous
\[ y\ddot{y}-\dot{y}^2=1 \] Which method would I use here? The boundary conditions are \[y(a)=y(-a)=1 \]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
i think reduction of order with\[p=\dot y\]will lead us to something maybe?
anonymous
  • anonymous
just note that\[\ddot y=p\dot p \]
anonymous
  • anonymous
\[ \dot{p}=\frac{ dp }{ dx}= \frac{d^2y}{dx^2}=\ddot{y} \]Surely?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
[yy']'=yy''+y'^2 so just difference in sign. Maybe it is a derivative of some quotient.
anonymous
  • anonymous
make p a function of y\[\ddot y=\frac{dp}{dx}=\frac{dp}{dy}\frac{dy}{dx}=p \dot p\] and what @myko mentioned can be a good start too
anonymous
  • anonymous
actually that is\[\ddot y=\frac{dp}{dx}=\frac{dp}{dy}\frac{dy}{dx}=p \dot p_y\]
anonymous
  • anonymous
Sorry, I got confused by the notation
anonymous
  • anonymous
\[\Large yy'' - \left( y' \right)^2 = -\left(y'\right)^2\left( \frac{y}{y'} \right)'\]
anonymous
  • anonymous
Very nice, but how does that help?

Looking for something else?

Not the answer you are looking for? Search for more explanations.