anonymous
  • anonymous
\[ y\ddot{y}-\dot{y}^2=1 \] Which method would I use here? The boundary conditions are \[y(a)=y(-a)=1 \]
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
i think reduction of order with\[p=\dot y\]will lead us to something maybe?
anonymous
  • anonymous
just note that\[\ddot y=p\dot p \]
anonymous
  • anonymous
\[ \dot{p}=\frac{ dp }{ dx}= \frac{d^2y}{dx^2}=\ddot{y} \]Surely?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
[yy']'=yy''+y'^2 so just difference in sign. Maybe it is a derivative of some quotient.
anonymous
  • anonymous
make p a function of y\[\ddot y=\frac{dp}{dx}=\frac{dp}{dy}\frac{dy}{dx}=p \dot p\] and what @myko mentioned can be a good start too
anonymous
  • anonymous
actually that is\[\ddot y=\frac{dp}{dx}=\frac{dp}{dy}\frac{dy}{dx}=p \dot p_y\]
anonymous
  • anonymous
Sorry, I got confused by the notation
anonymous
  • anonymous
\[\Large yy'' - \left( y' \right)^2 = -\left(y'\right)^2\left( \frac{y}{y'} \right)'\]
anonymous
  • anonymous
Very nice, but how does that help?

Looking for something else?

Not the answer you are looking for? Search for more explanations.