Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

math_proof

Prove carefully that the well ordering principle implies the principal of mathematical induction. That is, suppose the P(n) is a predicate about natural numbers n. Suppose that P(1) is true, and suppose also that for all n ∈ N, P (n + 1) is true if P (n) is true. Using the well ordering principle prove that then P(n) is true for all n. (Hint: consider the set of natural numbers n for which P(n) is false.)

  • one year ago
  • one year ago

  • This Question is Closed
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.