The management of a large store wishes to add a fenced in rectangular storage yard of 20000 ft^2 using the building as one side of the yard. Find the minimum amount of fencing that must be used to enclose the remaining 3 sides of the yard.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

The management of a large store wishes to add a fenced in rectangular storage yard of 20000 ft^2 using the building as one side of the yard. Find the minimum amount of fencing that must be used to enclose the remaining 3 sides of the yard.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1352078429334:dw|
Okay, I am confused on what formula to use
Called away a short time ago. area = h*w, 20000= h*w perimeter = 2h + w Solve 20000 = h*w for w and plug the result into the RHS of the perimeter equation. Take the derivative of the resulting RHS, set the derivative expression to zero and solve for h.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Thank you!
You're welcome and thank you for the medal. If you have access to the Mathematica 8 program, then this problem could have been solved using the Constrained Optimization function, Minimize: \[\text{Minimize}[\{2h+w,w h==20000,w>0,h>0\},\{w,h\}] \]\[\{400,\{w\to 200,h\to 100\}\} \] The 400 is the minimum perimeter value. No knowledge of the Calculus required with this approach.
Oh, okay, thanks I didn't know about that! Thank you !

Not the answer you are looking for?

Search for more explanations.

Ask your own question