At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

See more answers at brainly.com

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions

draw the region, what is the equation of the line between (1,0) and (0,1) ?

|dw:1352136497588:dw|

yes

only reversed, gotta have the constant last or you won't get a constant as an answer!

how would my integrals look

the inner integral is bounded by the function -x, the outer by the constants

after i solve it i get 2/3

I get 3/4
can you show your work?

|dw:1352137394567:dw|you dropped the /2 part...

ok sweet i got it

congrads!

but order doesn't matter if you have constants

terms of y*

@psk981 I just realized we messed this one up :P

|dw:1352139848664:dw|

how so

this function ain't -x, it's 1-x|dw:1352139902007:dw|

so that should be the inner bound

so goes from 0 to 1-x

yes

and|dw:1352140168346:dw|so I totally space out on the last one, sorry

\[\int_0^1\int_0^{1-x}x^2+ydydx=\int_0^1\left.x^2y+\frac{y^2}2\right|_0^{1-x}dx\]