anonymous
  • anonymous
Find the volume between two intersecting cylinders x^2+y^2=r^2 and y^2+z^2=r^2 using polar coordinates and double integrals only.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
TuringTest
  • TuringTest
|dw:1352144686186:dw|
TuringTest
  • TuringTest
in the xy-plane|dw:1352144919394:dw|\[-\sqrt{r^2-y^2}\le x\le\sqrt{r^2-y^2}\]in the yz-plane|dw:1352145089843:dw|\[-\sqrt{r^2-y^2}\le z\le\sqrt{r^2-y^2}\]leaving\[-r\le y\le r\]hm...
TuringTest
  • TuringTest
in the xz-plane the intersection is square with sides=2r|dw:1352145471598:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

TuringTest
  • TuringTest
I think the integral is\[\iint\limits_Dr\sin\theta dA=\int_0^{2\pi}\int_0^r r^2\sin\theta drd\theta\]can you check somewhow?
TuringTest
  • TuringTest
actually it would have to be\[\iint\limits_Dr\sin\theta dA=2\int_0^\pi\int_0^r r^2\sin\theta drd\theta\]to avoid getting zero
anonymous
  • anonymous
But the integrand should be r^2 * cos(theta) ?
anonymous
  • anonymous
since i am integrating z = sqrt(z^2-y^2)
anonymous
  • anonymous
so in polar i thought it was sqrt(r^2-y^2) = x = rcos(theta)
TuringTest
  • TuringTest
yeah I just came to that conclusion as well
TuringTest
  • TuringTest
I guess I was right the first time
anonymous
  • anonymous
but if I integrate with rcos(theta), I end up with zero in the end
anonymous
  • anonymous
I will get sin(2*pi) - sin(0) = 0.
TuringTest
  • TuringTest
Hm.. now I am not sure again. No way to check I presume...
TuringTest
  • TuringTest
@mahmit2012 double integral help

Looking for something else?

Not the answer you are looking for? Search for more explanations.