anonymous
  • anonymous
triple integrals in spherical coordinates
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\int\limits_{}^{}\int\limits_{}^{}\int\limits_{}^{}(x^2+y^2+z^2)^{5/2}\]
anonymous
  • anonymous
i know it going to be p^5 but what will the ingtegrals be
zepdrix
  • zepdrix
Do we have a region we're integrating over? D: Any boundaries like z=0, x=0 or anything? :O Or you're more concerned with just converting it correctly right now? :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
it just states that it is the unit ball
zepdrix
  • zepdrix
oh i see :)
anonymous
  • anonymous
so i guess the theta will be from 0 to 2pi right?
zepdrix
  • zepdrix
\[z= \rho \cos \phi\]\[x=\rho \cos \theta \sin \phi\]\[y=\rho \sin \theta \sin \phi\] \[(x^2+y^2+z^2)=(\rho^2)\] Oh oh you said you already figured that part out :) my bad. Yah theta will range from 0 to 2pi. Phi from 0 to pi I think... and Rho from 0 to our radius (1 since it's the UNIT ball).
zepdrix
  • zepdrix
\[\huge \int\limits_{\theta=0}^{2\pi}\int\limits_{\phi=0}^{\pi}\int\limits_{\rho=0}^{1}\rho^5 (\rho^2 \sin \phi d \rho d \phi d \theta)\] Somethinggggg like that. Thinkinggg..
anonymous
  • anonymous
yeap its right thanks

Looking for something else?

Not the answer you are looking for? Search for more explanations.