• anonymous
A vertical spring with mass is at equilibrium. The mass is then pushed up so that the spring is unstretched. The mass is dropped from this distance d from the equilibrium point. prove that the maximum distance that the spring stretches is 2d.
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • schrodinger
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
Is it definiely 2d and not \[\sqrt{2} d\]? If you use GPE as \[mgd\] then the systems total energy can be written as \[mgd = \frac{ 1 }{ 2 }mv ^{2} + \frac{ 1 }{ 2 }kx ^{2}\]. When the spring was stretched, at equilibrium position, the Force, mg caused the spring to stretch to d. So \[F = mg = kd\] (I.e Hookes law). Now, to get the maximum x, the velocity will be zero (spring fully stretched out). This means the KE is zero in the big equation, plus use Hooke's law to substitute out the k, then solve for x. I get sqrt(2) x d...

Looking for something else?

Not the answer you are looking for? Search for more explanations.