richyw
  • richyw
Find an equation for the tangent plane to the surface given by\[z=\ln{\left(1+x^2+y^2\right)}\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
richyw
  • richyw
Sorry, at the point (0,2,ln5). why can't I just say\[z_x=\frac{2y}{\left(1+x^2+y^2\right)}\]\[z_y=\frac{2x}{\left(1+x^2+y^2\right)}\]And then that \[z-ln(5)=z_x(0,2)(x-0)+z_y(0,2)(y-2)\]
richyw
  • richyw
so \[z=\frac{4}{5}x+\ln(5)\]
richyw
  • richyw
I don't see where I am going wrong....

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

richyw
  • richyw
nevermind. I see where I went wrong haha.
TuringTest
  • TuringTest
is it that you don't have the coefficient for z, since you didn't turn it into a function? I want to know because your way is different than mine.
TuringTest
  • TuringTest
er, I mean didn't turn it into a 3-variable function...
richyw
  • richyw
my notation was sloppy. All I do to find the plane tangent to \(z=f(x,y)\) at the point \(P\left(a,b,f(a,b)\right)\) is use the formula \[z-f(a,b)=f_x(a,b)(x-a)+f_y(a,b)(y-b)\]
richyw
  • richyw
I just accidentally put f_y where f_x should have been...
TuringTest
  • TuringTest
ah, gotchya thanks

Looking for something else?

Not the answer you are looking for? Search for more explanations.