anonymous
  • anonymous
could someone help me to find the sum of the series from zero to infinity (3^n/(5^n)n!)
MIT 18.02 Multivariable Calculus, Fall 2007
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
If I understand your question correctly, you would like to know what is:\[\sum_{n=0}^{\infty} \frac{ 3^n }{ 5^n \times n! }\] If this is the case, then, the equation can be written as: \[\sum_{n=0}^{\infty} \frac{ (\frac{3}{5})^n }{n! }\] The Taylor series of e^x is: \[e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}\] Comparing the two equations, the answer would be e^(3/5) = 1.8221. Hope it helps!

Looking for something else?

Not the answer you are looking for? Search for more explanations.