Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

I really need help with this geometric proof- Given: angleAXD is congruent to angleBXE, angleDXE is congruent to angle XYF. Prove: lineAE || to lineFY **drawing will be posted**

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
see this stuff is so hard :( i'd help ya if i could !!
|dw:1352260028460:dw|
1. angle AXD = angle BXE 1. Given 2. angle DXE = angle XYF 2. Given 3. AXB + BXD = BXD + DXE 3. By Substitution 4. AXB = DXE 4. By subtraction property of equality 5. AXB = EXY 5. Vertical angles 6. EXY = XYF 6. By transitive property of equality 7. AE || FY 7. By converse of alternate interior angles theorem

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

First, the fact that angles DXE and XYF are congruent means that they are identical angles. However, that alone is not enough to prove that the two lines are parallel, since line DX does not intersect both lines AE and FY. The first congruence relation just barely gives us what we need. Informal proof follows: 1. From the definition of a line, line AE has angle AXE of angle 180 degrees. 2. Since angles AXD and BXE are congruent, they form identical angles. 3. Since the angles AXD and DXE added together must form 180 degrees (from #1), then angle AXB must equal DXE (from #2). From the definition of parallel lines, lines AE and FY must be parallel, since a line intersecting both of them results in identical angles.

Not the answer you are looking for?

Search for more explanations.

Ask your own question