anonymous
  • anonymous
how to simplify square root of (9*e^4)*2*(e^-3)?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
lgbasallote
  • lgbasallote
multiply (9e^4) * 2 first. what do you get?
anonymous
  • anonymous
sorry i did that wrong its like this|dw:1352271755951:dw|
lgbasallote
  • lgbasallote
well that's different... take teh square root of \(\sqrt{9e^4}\) i assume you know how to?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
you get 3e^2?
lgbasallote
  • lgbasallote
yes now multiply that to 2
anonymous
  • anonymous
6e^2 or 6e^4?
lgbasallote
  • lgbasallote
6e^2
lgbasallote
  • lgbasallote
now multiply that to e^-3
anonymous
  • anonymous
6e^-6?
lgbasallote
  • lgbasallote
no
lgbasallote
  • lgbasallote
remember rules of exponents.. \[\huge x^a \times x^b \implies x^{a + b}\]
anonymous
  • anonymous
oh so 6e^2+-3 so 6e^-1?
lgbasallote
  • lgbasallote
if you have negative exponent that just becomes \[\huge x^a \times x^{-b} \implies x^{a + (-b)} \implies x^{a - b}\]
lgbasallote
  • lgbasallote
yes 6e^-1
lgbasallote
  • lgbasallote
now...recall your rules of exponents again.. \[\huge x^{-m} \implies \frac 1 {x^m}\]
anonymous
  • anonymous
so 6e?
lgbasallote
  • lgbasallote
no. look at my comment very carefully
lgbasallote
  • lgbasallote
i didn't say \[\huge x^{-m} \implies x^m\]
anonymous
  • anonymous
so 6(1/e^1)?
lgbasallote
  • lgbasallote
yes. simplify it more
anonymous
  • anonymous
can i multiply 6 by that? so like 6/e^1?
lgbasallote
  • lgbasallote
yes. simplify it more
anonymous
  • anonymous
IDK how unless it's e^-1/6
lgbasallote
  • lgbasallote
no
lgbasallote
  • lgbasallote
6/e^1 was already right.. you just have tp simplify it more into 6/e...e^1 = e remember?
anonymous
  • anonymous
so 6/e?
lgbasallote
  • lgbasallote
yes
anonymous
  • anonymous
is that it?
lgbasallote
  • lgbasallote
yes
anonymous
  • anonymous
okay thank you goodnight :)
lgbasallote
  • lgbasallote
unless you think you can simplify it further

Looking for something else?

Not the answer you are looking for? Search for more explanations.