does y' of ln(4^s) = 1/4^s or s/4 ??

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

does y' of ln(4^s) = 1/4^s or s/4 ??

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\(\large ln(4^s) = s \cdot ln(4)\)
so it would be s/4 then.
ln(4) is a constant

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yes but the derivative of ln=1/x
If you are finding \(\large y'=\frac{d}{ds}[ ln(4^s)]\) \(\large y'=\frac{d}{ds}[ ln(4)s] =\frac{d}{ds}[c\cdot s], \space c=ln(4)\)
The derivative of ln x is 1/x, but ln 4 is a constant, and the derivative of a constant is zero.
But here you are taking the derivative of a constant times a variable.
what is c*s ???
im confused by your explanation.
the derivative is with respect to s what is d/ds(s) ?
umm s'?
no, what is d/dx(x) ?
s' would be if s was a function of some other variable.
=1
yes, so we just changed the name of s to x ...so d/ds(s)=?
=1 !
yes :) now what if we multiply by a constant that we call 'c' ? then d/ds(cs)=?
c
yes now for your problem we can write ln(4^s)=s*ln4 ln4 is a constant, so d/ds(ln(4^s))=?
ln4?
yes
so thats the answer?
yep
Thanks for the backup, Turing!
No prob!

Not the answer you are looking for?

Search for more explanations.

Ask your own question