anonymous
  • anonymous
Write an equation this is equivalent to f(x)=-5sin(x-pi/2) - 8 using trig.function of x
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
richyw
  • richyw
ok so you have \[f(x)=-5\sin\left(x-\frac{\pi}{2}\right)-8\] For now just focus on \[g(x)=\sin\left(x-\frac{\pi}{2}\right)\] what does this do to the graph?
richyw
  • richyw
where \(x=\pi/2\), what is \[\sin\left(x-\frac{\pi}{2}\right)\]also brb. just gotta hand in something quick...
anonymous
  • anonymous
okay.. will it be sin(x-pi/2)=0??

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
i dont really understand the question itself
richyw
  • richyw
sorry open study died on me.
richyw
  • richyw
You are correct that \(g(\pi/2)=0\) You can repeat this with some other key x-values \(x=\pi/2,\quad x=\pi ,\quad x=0 \) and find that what you get is \[\sin\left(x-\frac{\pi}{2}\right)=-\cos\pi\]
richyw
  • richyw
you will eventually just memorize these phase shifts, but if you ever forget on a test, you can always make a quick sketch using the method I explained. So now remember that we called \[g(x)=\sin\left(x-\frac{\pi}{2}\right)=-\cos x\] Going back to the original function you have \[f(x)=-5\sin\left(x-\frac{\pi}{2}\right)-8\]\[f(x)=-5g(x)-8\]So the hard part is already done. The 8 is all by itself so it just shifts the up and down, and the -5 just makes the amplitude of the wave greater. All you have to do now is plug in the expression you worked out for g(x). \[f(x)=-5(-\cos x)-8\]\[f(x)=5\cos x -8\]
richyw
  • richyw
Oops made a mistake, in the second last post. It should say : You are correct that \(g(π/2)=0\) You can repeat this with some other key x-values \(x=π/2,\quad x=π,\quad x=0\) and find that what you get is \[\sin\left( x−\frac{\pi}{2}\right)=−\cos x\]
anonymous
  • anonymous
sorry i fell alseep -_- .. accoriding the the cofunction identities isnt it : cosx=sin(pi/2-x)? so using that you can get -cosx=sin(x-pi/2) (sorrydont understand)

Looking for something else?

Not the answer you are looking for? Search for more explanations.